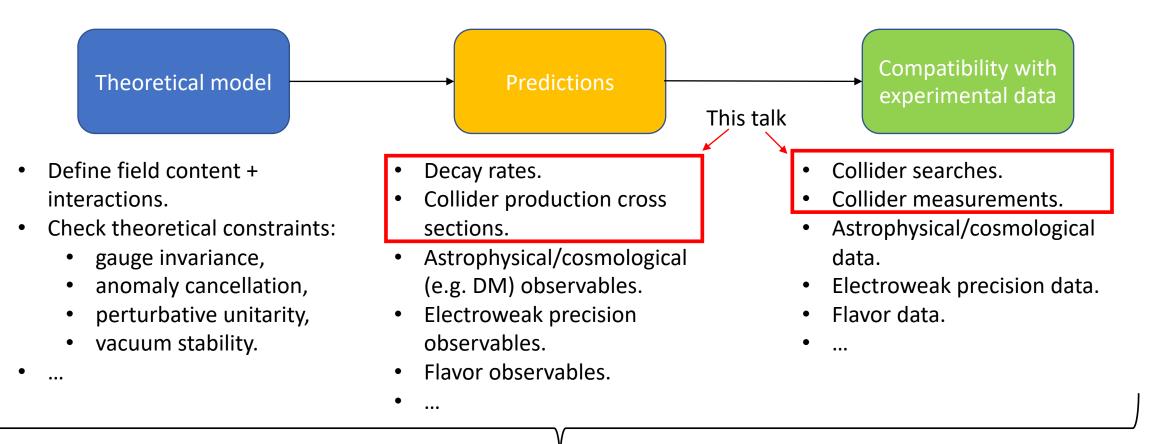
HiggsTools: A Toolbox for BSM Scalar Phenomenology

Henning Bahl

gitlab.com/higgsbounds/higgstools



Workshop on Automatic Phenomenology, June 9th 2022

This work is based on a collaboration with

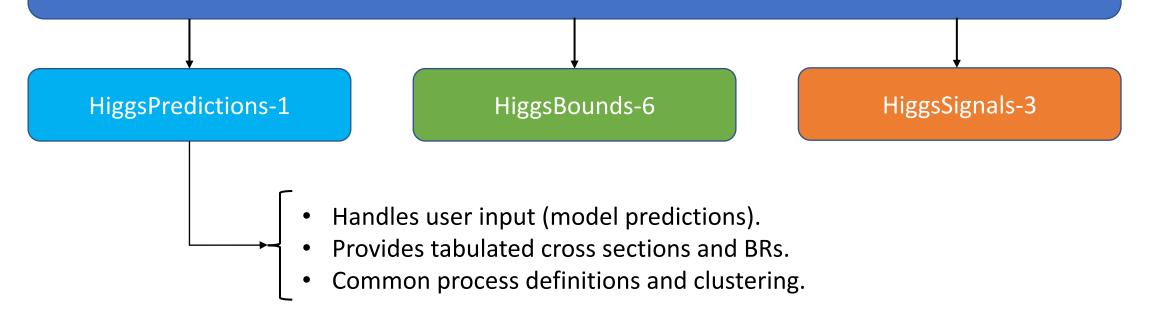
Jonas Wittbrodt, Thomas Biekötter, Sven Heinemeyer, Cheng Li, Steven Paasch, and Georg Weiglein.

Pheno workflow

Some of these steps are easy, most are quite involved! \rightarrow Automation.

HiggsBounds and HiggsSignals — recap

HiggsBounds-5


- Input: Higgs XS and BRs or effective couplings.
- Limits: database of over 200 LEP, Tevatron, LHC Higgs searches.
- Output: check if model point is excluded by one of these searches.
- Developed since ~ 2008, written in Fortran.

HiggsSignals-2

- Input: Higgs XS and BRs or effective couplings.
- Measurements: LHC Run 1 + 2 Higgs mass and signal strength measurements.
- Output: χ^2 value quantifying compatibility with experimental Higgs data.
- Develop since ~2012, written in Fortran.

Presenting HiggsTools

HiggsTools is a complete and extended rewrite of HiggsBounds and HiggsSignals in modern C++.

C++ interface for high performance; Python and Mathematica interfaces for ease of use.

HiggsPredictions

What does the model predict for Higgs XS and BRs?

HiggsPredictions overview

- All information about particles and their properties are stored in Predictions class.
- Information about each particle is stored in BSMParticle class:
 - Quantum numbers: electric charge, CP.
 - All relevant production and decay modes for LEP and LHC.
 - Decays into mixed SM/BSM pairs (e.g. $H \rightarrow ZA$) and into pure BSM pairs (e.g. $h \rightarrow HH$).
- Tabulated XS and BRs for reference particles (e.g. SMHiggs).
- Effective coupling input to set particle properties relative to these reference models.
- Automatically calculates XS and BRs in terms of effective couplings.

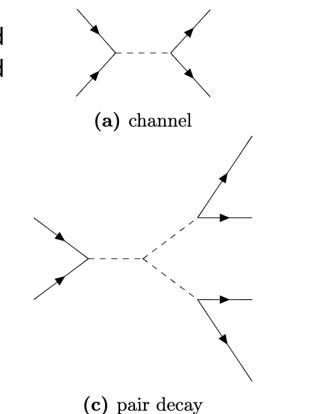
HiggsPredictions input vs. HB-5 input

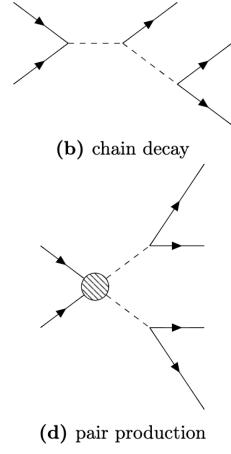
HB-5 input

subroutine HiggsBounds_neutral_input_SMBR (BR_hjss , BR_hjcc , BR_hjbb , BR_hjtt , BR_hjmumu ,

BR_hjtautau, BR_hjWW, BR_hjZZ,

- BR_hjZga , BR_hjgaga , BR_hjgg)
- Arrays of length #particles are used as input.
- Every XS and BR has to be set for every particle.
- Adding new decay modes breaks existing code.


HiggsPredictions input


- Object oriented → properties of all particle can be set independently: e.g. p.setBr("bb", 0.4).
- Adding new types of production and decay modes straightforward.

HiggsPredictions — process types

All processes used in HiggsBounds and HiggsSignals are now consistently defined as one of four process types:

- a) Channel (1 BSM particles).
- b) Chain decay (2 BSM particles).
- c) Pair decay (3 BSM particles).
- d) Pair production (2 BSM particles).

HiggsPredictions — XS and BR predictions

- All XS and BRs can be set by the user.
- For many BSM Higgs models, rescaling of SM results is a very good approximation.
- Therefore, user can also employ effective coupling input.
- For effective coupling input, XS and BR are calculated by HiggsPredictions (assuming absence of contribution by BSM particle.

```
cpls = Higgs.predictions.NeutralEffectiveCouplings()
cpls.tt = 1
cpls.bb = 1
cpls.tautau = 1
cpls.ss = 1
cpls.mumu = 1
cpls.gg = 1
cpls.ZZ = 1
cpls.WW = 1
cpls.gamgam = 1
cpls.Zgam = 1
cpls.cc = 0.9 + 1j * 0.1
Higgs.predictions.effectiveCouplingInput(
    h,
    cpls,
    reference=HP.ReferenceModel.SMHiggsEW)
```

HiggsPredictions — XS predictions

prod. channel	coupling dep.	mass range [GeV]	source
ggH	$c_t, \tilde{c}_t, c_b, \tilde{c}_b$	10 - 3000	SusHi
bbH	$c_b, ilde c_b$	10 - 3000	resc. of SM result
VBF	c_Z, c_W	LHC8: $1 - 1050$, LHC13: $1 - 3050$	HAWK
$t \bar{t} H$	$c_t, ilde c_t$	25 - 1000	MadGraph
tH (t channel)	$c_t, ilde c_t, c_W$	25 - 1000	MadGraph
tWH	$c_t, ilde c_t, c_W$	25 - 1000	MadGraph
WH	c_W, c_t	1 - 2950	vh@nnlo
$qq \rightarrow ZH$	c_Z, c_t	1 - 5000	vh@nnlo
$gg \to ZH$	$c_t, c_b, c_Z, \tilde{c}_t, \tilde{c}_b$	1 - 5000	vh@nnlo
$b\bar{b} \rightarrow ZH$	c_b	1 - 5000	vh@nnlo
$q_i q_j \to H$	$c_{q,ij}, ilde{c}_{q,ij}$	1 - 5000	vh@nnlo
$q_i q_j \to H^{\pm}$	$c_{qL,ij}, c_{qR,ij}$	200 - 1150	2109.10366
$q_i q_j \to H + \gamma$	$c_{q,ij}, ilde{c}_{q,ij}$	200 - 1150	2109.10366
$q_i q_j \to H^{\pm} + \gamma$	$c_{qL,ij}, c_{qR,ij}$	200 - 1150	2109.10366
$b\bar{b} \rightarrow ZH$	c_b	200 - 1150	2109.10366
$pp \to H^{\pm}tb$	$c_{L,tb}, c_{R,tb}$	145 - 2000	1507.02549, 1607.05291
$pp \to H^{\pm}\phi$	$c_{H^\pm\phi W^\mp}$	$m_{\phi}: 10 - 500, m_{H^{\pm}}: 100 - 500$	2103.07484

- Predictions also available for decay modes: $H \rightarrow f\bar{f}$, WW, ZZ, $\gamma\gamma$, gg.
- Additional K-factor based on YR4 numbers is applied to derived XS and BR values.

HiggsBounds

Is your model excluded by searches for BSM scalars?

HiggsBounds — overview

HiggsBounds uses a library of experimental limits. For every limit, it

- 1. checks which particles in the model are relevant for each *role* in the process;
- 2. finds all *maximal clusters* for each *role* that fulfill the analysis assumptions;
- 3. computes the model predictions for all assignments of *clusters* to the process roles;
- 4. obtains the expected and observed ratios (i.e., model prediction/limit).

For each particle, the most sensitive limit is selected based on the expected ratio. The parameter point is regarded as allowed if the observed ratio < 1 for all selected limits.

HiggsBounds — clustering

Multiple particles of similar mass can remain unresolved.

 \rightarrow Define clusters of particles with masses m_i fulfilling

 $\max(m_i) - \min(m_i) \le r_{abs} + r_{rel} \cdot \operatorname{mean}(m_i)$

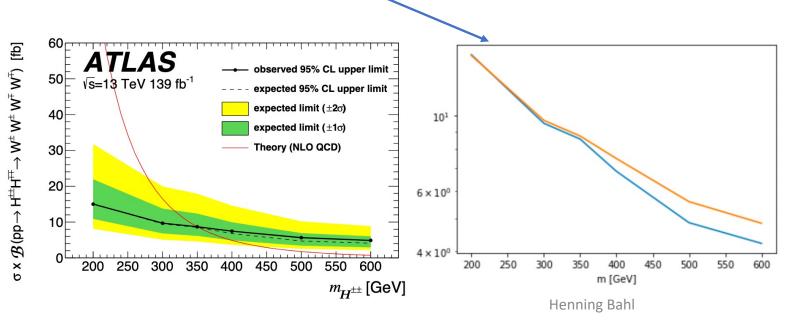
- Mass resolutions given by experiment or estimated.
- Can also account for theoretical mass uncertainties Δm_i :
 - Cautious: only if entire $\pm \Delta m_i$ regions overlap.
 - Eager: as soon as $\Delta m + r$ regions touch.
 - Ignore: ignore Δm_i for clustering.
- Clustering for all particle roles in all search topologies.
- Consistent treatment of all implemented searches.

 $pp \rightarrow \phi_i \rightarrow h_{125}\phi_j, h_{125} \rightarrow \tau\tau, \phi_j \rightarrow bb$ $400 - \underbrace{H}_{-----} A_{----}$ $300 - \underbrace{H \rightarrow hh, SS, hS, A_SA_S}_{A \rightarrow hA_S, SA_S}$ $A \rightarrow hA_S, SA_S$ $h_{------} A_{-----}$

Clustering to $\{H, A\} \rightarrow \{h\} \{S, A_S\}$

HiggsBounds — experimental searches

HiggsBounds-5


- All process definitions were hard-code in Fortran.
 - Solution Maintainability: adding new limits requires non-trivial code changes.
 - Substitution Section Sectio

HiggsBounds-6

- All searches fully defined through *json* datafiles.
 → implementation of new limit does not require any changes in C++ code.
- Common set of constraints used to set analysis assumptions.
- Database of experimental results separate and independent of main code.
- Public implementation and validation scripts for every analysis.

HiggsBounds — limit example

- Publicly available iPython notebooks for every limit.
- If possible, data is pulled from HEPdata.
- Outputs json limit file containing all information about a limit.
- Validation plots are generated automatically.

"limitClass": "PairProductionLimit", "id": 210111961, "reference": "2101.11961", "source": "https://www.hepdata.net/record/ins1688938", "citeKey": "ATLAS:2021jol", "collider": "LHC13", "experiment": "ATLAS", "luminosity": 139.0, "process": { "firstDecay": "WWsamesign" "secondDecay": "WWsamesign" }, "analysis": { "equalParticleMasses": true, "grid": { "massFirstParticle": 200.0, 300.0, 350.0, 400.0, 500.0, 600.0 }, "limit": { "observed": 15.025, 9.6896, 8.7162, 7.4858, 5.5951, 4.8339 "expected": 15.111, 9.4993,

HiggsBounds — dataset

HiggsBounds data set available at gitlab.com/higgsbounds/hbdataset.

Current status:

- 258 limits from 165 experimental publications:
 - 25 LEP searches from 13 publications (mostly combinations),
 - 90 LHC Run 1 searches from 26 ATLAS and 37 CMS publications,
 - 143 LHC Run 2 searches from 44 ATLAS and 45 CMS publications.
- dataset strictly superior to the HB-5 dataset:
 - full Run-2 results in many channels,
 - doubly charged Higgs searches.

HiggsSignals

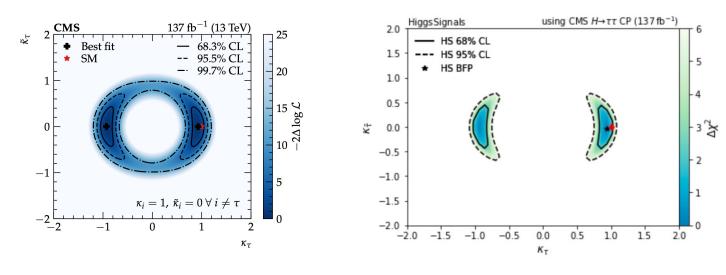
Is your model compatible with measurements of the SM-like Higgs boson?

HiggsSignals overview

HiggsSignals uses a library of Higgs measurement. Based on these measurements it computes

$$\chi^{2} = (\mu - \hat{\mu})^{T} \left[\Delta_{\text{obs}}^{T} \text{Corr}_{\text{obs}} \Delta_{\text{obs}} + \Delta_{\text{theo}}^{T} \text{Corr}_{\text{theo}} \Delta_{\text{theo}} \right]^{-1} (\mu - \hat{\mu})$$

with μ being a normalized signal rate, mass, or coupling measurement.


HS-2 distinguished between three slightly different types of measurements:

- peak observables,
- ATLAS/CMS Run 1 combinations,
- STXS observables.

With HS-3, all measurements are treated equally and are consistently implemented using json files.

HiggsSignals — meas. example

- Publicly available iPython notebooks for every measurement.
- If possible, data is pulled from HEPdata.
- Outputs json limit file containing all information about a measurement.
- Validation plots are generated automatically.

"id": 211004836, "reference": "2110.04836", "source": "Aux. Tab. 2, Aux. Fig. 30", "citeKey": "CMS:2021sdq", "collider": "LHC13", "experiment": "CMS", "luminosity": 137.0, "referenceMass": 125.38, "referenceModel": "SMHiggsEW", "massResolution": 18.75, "subMeasurements": { "alphaCP": { "coupling": "alphaCPTauYuk", "obsCoupling": [-0.3490658503988659, -0.017453292519943295, 0.3141592653589793 "process": { "channels": ["H", "tautau" l, "vbfH", "tautau"

Henning Bahl

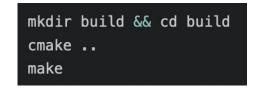
HiggsSignals — dataset

HiggsSignals data set available at gitlab.com/higgsbounds/hsdataset.

Current status:

- 22 measurements (11 ATLAS Run-2, 9 CMS Run-2 and 2 Run-1 Combination) with 136 individual observables.
- dataset strictly superior to the HS-2 dataset:
 - full Run-2 results in many channels,
 - Updated mass measurements,
 - new type of measurement: CMS measurement of $H \rightarrow \tau \tau$ CP phase.

Interfaces and code examples


How to use HiggsTools?

HiggsTools — quick start guide

Extensive online documentation: higgsbounds.gitlab.io/higgstools/index.html

C++ library:

- 1. Make sure you have the right dependencies (gcc >= 9, clang >= 5, CMake >= 3.17, Python >=3.5).
- 2. Download HiggsTools code and data repositories from gitlab.com/higgsbounds.
- 3. In the code directory, type

Python interface: In the code directory, type pip install .

Mathematica interface:

cmake -DHiggsTools_BUILD_MATHEMATICA_INTERFACE=ON ..

SLHA and datafile input still available via Python interface.

Code example

Conclusions

Conclusions

- HiggsTools is a complete rewrite of HiggsBounds and HiggsSignals in modern C++.
- Three sub-packages:
 - HiggsPredictions \rightarrow model input + predictions,
 - HiggsBounds,
 - HiggsSignals.
- C++, Python, and Mathematica interfaces.
- Many new features: predictions for most relevant XS and BRs in terms of effective couplings, easy extensible datasets, doubly-charged scalars, ...
- Ready to use **now** (paper in preparation).
- Code and extensive documentation available at

gitlab.com/higgsbounds/higgstools