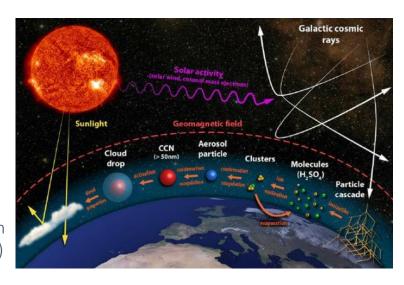
Development of Geant4-DNA for atmosphere simulations

PhD student: Francesca Nicolanti Department of Physics, Sapienza University of Rome, Italy Avisor: Dott. C. Mancini (La Sapienza) External Advisor: Dott.ssa B. Caccia (National Institute of Health, Rome)

francesca.nicolanti@uniroma1.it

Motivation

What is the impact of cosmic rays and ions on atmospheric chemistry?

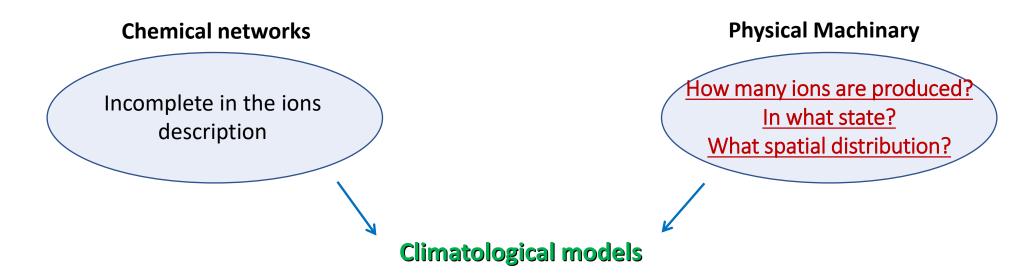

Atmosphere Atomic

CRs represent the main source of atmospheric ionization and related physical-chemical changes in the low-mid atmosphere

(Bazilevskaya et al. 2008).

precipitation
(Kniveton 2004)

aerosol formation (Shumilov et al. 1996 Mironova and Pudovkin 2005; Kazil et al. 2006)


ion-induced nucleation (Svensmark et al. 2007)

cloud cover (Voiculescu et al. 2006)

Ozone deplation (Enghoff et al2012)

Motivation

What is the impact of cosmic rays and ions on atmospheric chemistry?

The predictivity of current models is still incomplete..

The proposed project aim at <u>a very accurate characterization of ions state and distribution</u> in the atmosphere.

lons in the atmosphere

- Ions affect the atmospheric composition either destroying or producing neutral molecules by faster reactions
 - ion-molecule reaction rate up to 10 orders higher
- Even a small amount of substance can make a difference:
 - non-linear chemical system
 - catalytic processes
- Spatial distribution of ions is extremely inhomogeneous

Production of dangerous greenhouse gases

$$O_3^+ + N_2 \longrightarrow O_2^+ + N_2^-$$

F. Cacace et al. *Angew. Chem. Int. Ed. Engl.* 2001, 40, 1938

The connection of cosmic rays with ions and the climate parameters is a challenging topic.

CR induced Ionisation models: State of the Art

Monte-Carlo simulations:

Oulu CRAC:CRII (CORSIKA+FLUKA)

Usoskin et al., J. Atm. Solar-Terr. Phys, (2004).
Usoskin, Kovaltsov, J. Geophys. Res., (2006, 2010).

Bern model ATMOCOSMIC (GEANT-4)

Desorgher et al., Int. J. Mod. Phys. A, (2005) Scherer et al. Space Sci. Rev. (2006).

AtRIS (GEANT-4)

Banjac et al., JGR Space Physics (2018)

RUSCOSMICS

Maurchev et al., Bull. Russ. Acad. Sci. Phys. (2019)

Physics behind: Monte-Carlo simulation of the cascade, all species and processes included down to lower stratosphere (below ~20 km),

Output of the models: average production rate of ion pairs (ions cm-3 s-1)

CR induced Ionisation models: State of the Art

Monte-Carlo simulations:

Oulu CRAC:CRII (CORSIKA+FLUKA)

Usoskin et al., J. Atm. Solar-Terr. Phys, (2004).

Usoskin, Kovaltsov, J. Geophys. Res., (2006, 2010).

Bern model ATMOCOSMIC (GEANT-4)

Desorgher et al., Int. J. Mod. Phys. A, (2005) Scherer et al. Space Sci. Rev. (2006).

Atris (GEANT-4)

RUSCOSMICS

Banjac et al., JGR Space Physics (2018)

Maurchev et al., Bull. Russ. Acad. Sci. Phys. (2019)

Physics behind: Monte-Carlo simulation of the cascade, all species and processes included down to lower stratosphere (below \sim 20 km).

Output of the models: average production rate of ion pairs (ions cm-3 s-1)

BUT...

- The interaction of low-energy secondary radiation with molecules are not included;
- They can not provide the exact concentration of the ions produced, their spatial distribution, and ionization state.

Geant4-DNA for atmosphere

The AIM:

Accurately describe the **amount and state of ionisation**, and the spatial distribution of ions produced by CR interaction in the atmosphere;

The HOW:

By including in Geant4-DNA models for particle-impact interactions with relevant molecules for climatology

Now: e- impact on N2 and O2

- Ionisation: Relativistic Binary Encounter Bethe model;
- **Elastic:** ELSEPA code;
- Electronic excitation: WORK IN PROGRESS.

Next: $CO_2, N_2O, O_3, CH_4, ...$

Geant4-DNA for atmosphere

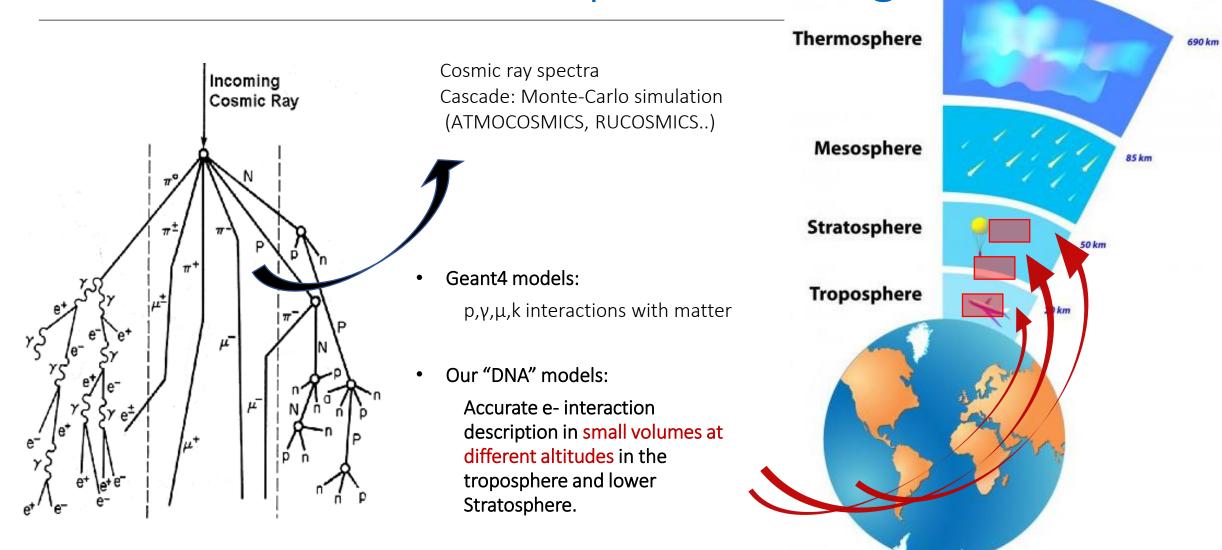
The AIM:

Accurately describe the **amount and state of ionisation**, and the spatial distribution of ions produced by CR interaction in the atmosphere;

The HOW:

By including in Geant4-DNA models for particle-impact interactions with relevant molecules for climatology

Now: e- impact on N2 and O2


- **Ionisation:** Relativistic Binary Encounter Bethe model;
- Elastic: ELSEPA code;
- Electronic excitation: WORK IN PROGRESS.

Next: CO_2 , N_2O , O_3 , CH_4 ,...

External Collaborators:

- A. Cartoni, M. Satta (Sapienza Chemistry, CNR, Rome)
- Dott.ssa B. Caccia (National Health Instituite, Rome)
- S.Incerti, H.N. Tran (CNRS / IN2P3, France)
- D. Emfietzoglou, I. Kyriakou (Ioannina, Greece)

Geant4-DNA for atmosphere :final goal

Ionisation - RBEB

- Electron impact ionization
- **Method**: Relativistic Binary Encounter Bethe (RBEB) (Kim, 2000);
- Energy range: threshold 1 GeV.
- Advantages:
 - depends only on B, U, N for each MO;
 - allows energy loss to be randomly sampled without using tables;
 - Applicable to different targets (H2O, DNA, gases..)

SDCS for Molecular Orbital:

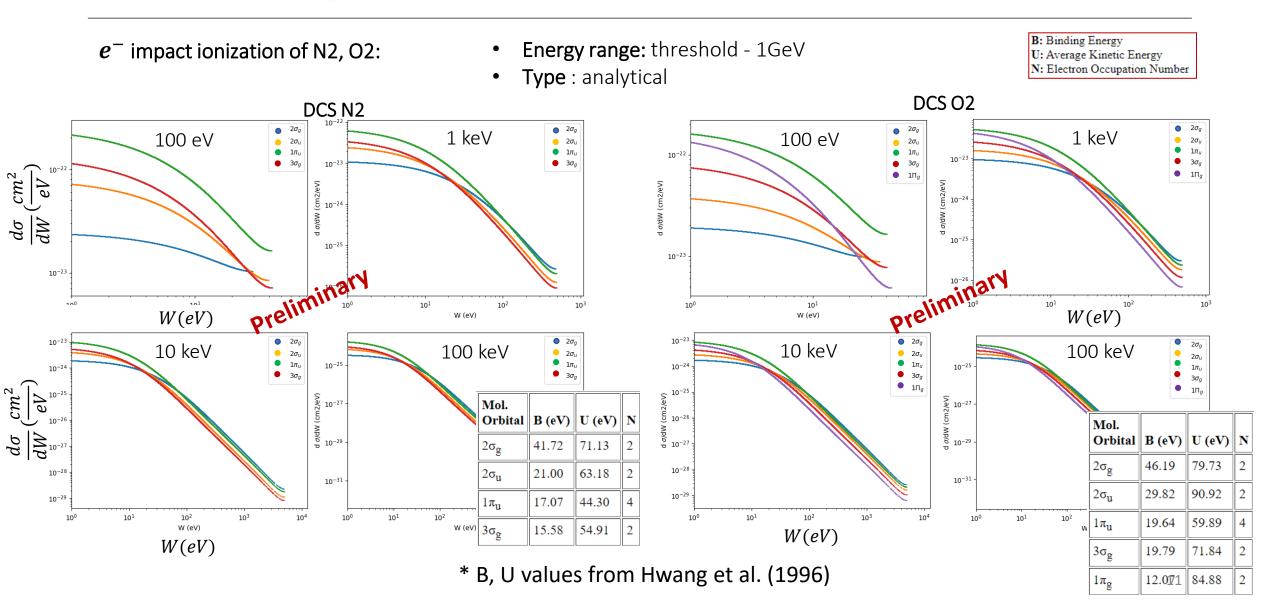
$$\frac{d\sigma_{ion,MO}}{dW} = \frac{\pi a_0^2 \alpha^4 N}{(\beta_t^2 + \beta_u^2 + \beta_b^2) 2b'} \left\{ \left[ln(\frac{\beta_t^2}{1 - \beta_t^2}) - \beta_t^2 - ln(2b') \right] \left[\frac{1}{(w+1)^3} + \frac{1}{(t-w)^3} \right] - \frac{1}{t+1} \left(\frac{1}{w+1} + \frac{1}{t-w} \right) \left[\frac{1+2t'}{(1+t'/2)^2} \right] + \frac{1}{(w+1)^2} + \frac{1}{(t-w)^2} + \frac{b'^2}{(1+t'/2)^2} \right\}$$

B: Binding Energy

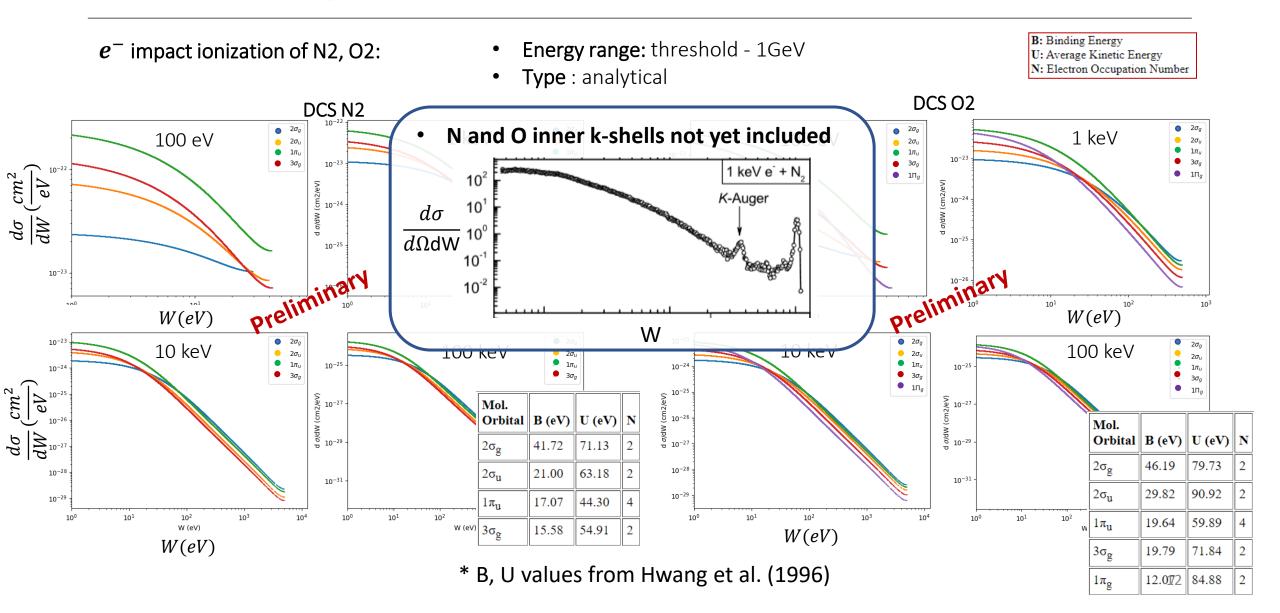
U: Average Kinetic Energy

N: Electron Occupation Number

W: ejected e^- energy; T: incident e^- energy; U=u/B, w=W/B, t=T/B;

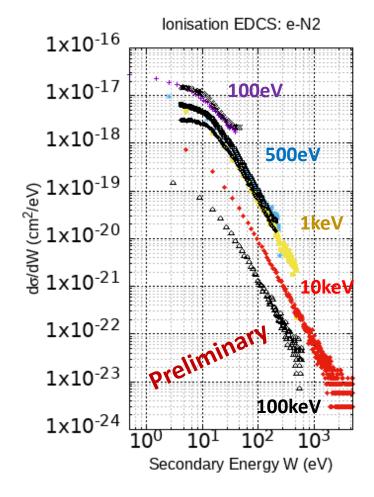

 $S = (4\pi a_0^2 N R^2)/B^2$

G GEANT4-DNA	ELECTRON Ionisation	(alternative models to default one
OEAN IN-DIVA	ELECTRON IOMSation	(alternative models to default one


Material	Corresponding model	Class name	Energy range	Type
H_2O Gold	G4DNACPA100IonisationModel G4DNARelativisticIonisationModel	BEB* MRBEBV**	11 eV - 255 keV 8.3 eV - 1 GeV	interpolated analytical

- * Binary Encounter Bethe
- ** Modified Relativistic Binary Encounter Bethe Vriens (for alkali metals low binding energy regime)

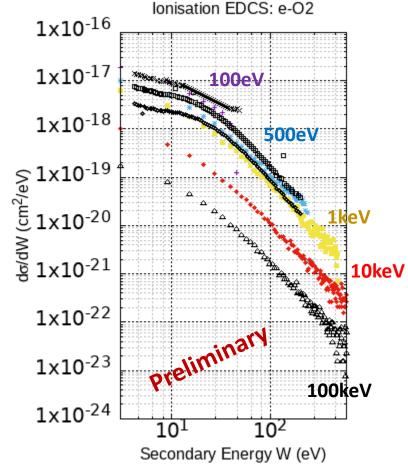
RBEB - implementation in GEant4



RBEB - implementation in GEant4

RBEB - implementation in GEant4

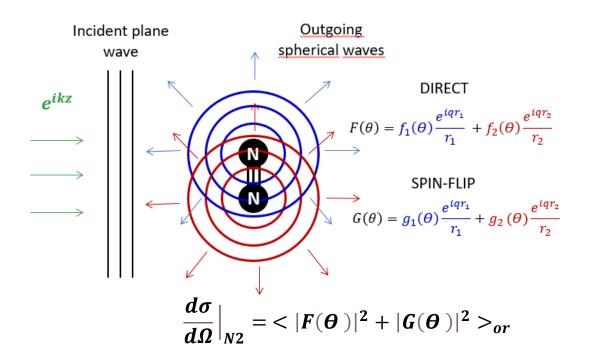
e^- impact ionization of N2, O2:



- Energy range: threshold 1GeV
- Type: analytical

Other DCS data sets:

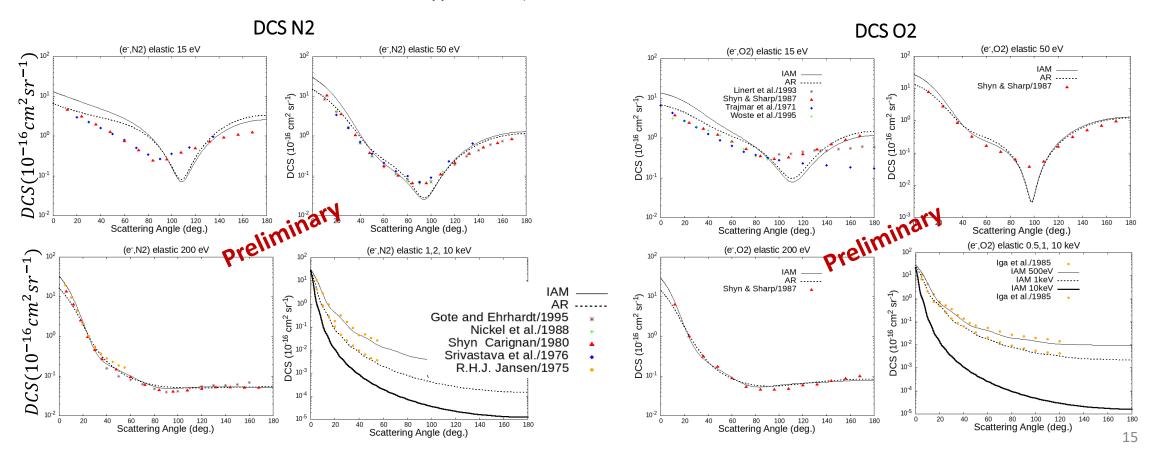
- C.B. Opal, E.C. Beaty,
 W.K. Peterson, Atomic
 Data Tables 299.(1972)
 209.
- R.D. DuBois, M.E. Rudd, Phys. Rev. A 17 (1978) 843.
- T.W. Shyn, Phys. Rev. A 27 (1983) 2388.



Elastic scattering – ELSEPA code

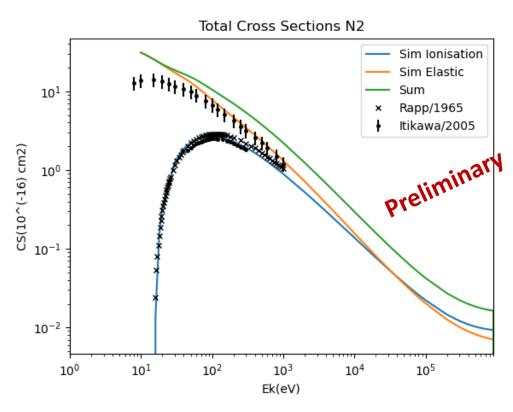
"ELastic Scattering of Electrons and Positrons by neutral Atoms" code developed by Salvat et al. Freely available at https://github.com/eScatter/elsepa

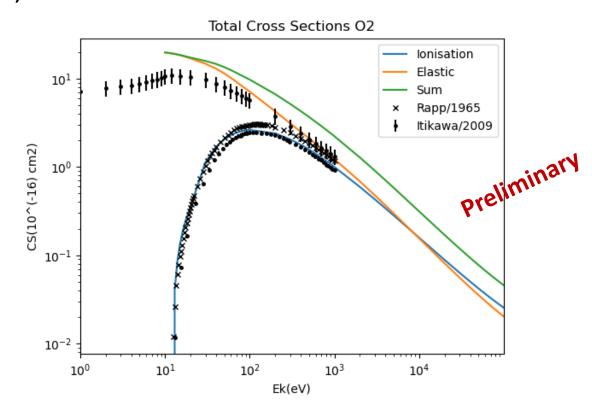
- Method: Indipendent Atom Model (Mott and Massey 1965)
 - Relativistic partial wave analysis
 - Molecular SDCS as a coherent sum of atomic scattering amplitudes
- Energy range: tens of eV 1 GeV
- Advantages:
 - Easy to change calculation parameters and interaction potential models;
 - Allows to calculate DCS in a variety of materials;



Material	Corresponding model	Class name	Energy range	Type
Gold	Relativistic PW (ELSEPA)	G4DNAELSEPAElasticModel	10 eV - 1 GeV	interpolated

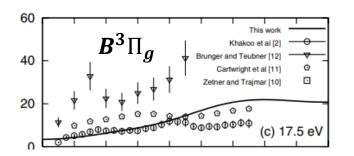
ELSEPA – implementation in Geant4

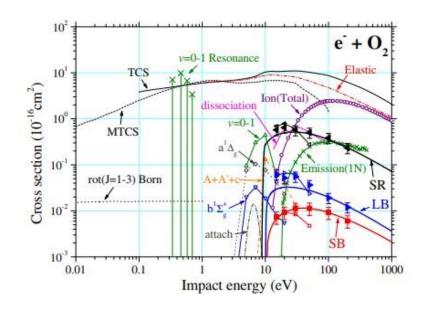

 e^- elastic scattering on N2, O2:


- Energy range:
 - 100 eV 1GeV : ELSEPA data
 - < 100eV: weighted average of exp data (work in progress)
- Type: interpolated

Ionisation/Elastic – Total CS

CS N2,O2:



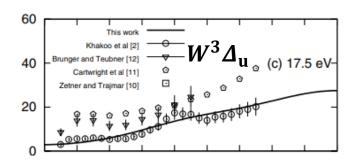

 N_2 ionization threshold: 15.58 eV

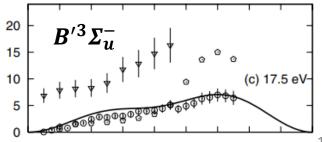
 O_2 ionization threshold: 12.07 eV

Excitation CS

- BEf-scaled Born method:
 - For electric dipole-allowed transitions
 - It depends by exp. Or theo. Quantities
- Ab-initio **R-matrix** close-coupling **method**
 - Accurate for TCS in the low energy range (5eV – 100 eV);
 - UKRmol+ code for the calculations.
- Experimental data

PHYSICAL REVIEW A 73, 052707 (2006)


R-matrix calculation of electron collisions with electronically excited O₂ molecules


Motomichi Tashiro* and Keiji Morokuma
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Ge

Jonathan Tennyson
Department of Physics and Astronomy, University College London, London WCII
(Received 11 November 2005; published 15 May 2006)

Electro collisions with molecular nitrogen in its ground and electronically excited states using the R-matrix method

Tashiro and Murukuma (2007):

He Su¹, Xinlu Cheng², Hong Zhang^{1,*} and Jonathan Tennyson^{3,*}

Summary

- ✓ The ionisation state and the spatial distribution of ions produced by cosmic rays can significantly change chemical reaction rates by orders of magnitude;
- ✓ Our project is trying to better characterizing ions in the atmosphere by extending Geant4DNA with new interaction models with molecules in the atmosphere;
- ✓ We are starting with N_2 and O_2 but our goal is to find models for all molecules of climatological interest $(CO_2, N_2O, O_3, CH_4, ...)$

Thank your for your

Backup

ELSEPA interaction potential

Optical potential model:

$$V(r) = V_{st}(r) + V_{ex}(r) + V_{cp}(r) - iW_{abs}(r)$$

Electrostatic potential $V_{st}(\mathbf{r})$

Potential model:

Nuclear charge: Fermi distribution;

Electron density: Dirac–Fock distribution.

Correlation-polarization potential $V_{st}(r)$

Influence at small scattering angles and E < 500eV

- Potential model:
 - Buckingham potential + LDA correlation (Perdew and Zunger)
- Free parameters:
 - static polarizability $\alpha_d = 1.562 E-24(02)$, 1.710 E-24(N2) [cm^3]
 - cut-off parameter $b_{pol}^2 = \max[(E 20 \text{ eV})/\text{eV}, 1].$

Exchange potential $V_{ex}(r)$

Potential model:

Furness-McCarthy potential.

Inelastic absorption potential $-iW_{abs}(r)$:

Influence at intermediate and large scattering angles

- Potential model:
 - LDA potential (Salvat)
- Free parameters:
 - lowest excitation energy ϵ_1 = 0.98 eV(O2), 7.63 (N2)
 - absorption strength $A_{abs} = 2$

Work in progress and next steps

- Ionisation: Inclusion of inner N,O k-shells and deexcitation;
- Elastic scattering:
 - implementation of weighted average of exp data for E< 100eV;
 - Systematic study to find the best empirical parameters of the optical interaction potential , b_{pol} , A_{abs} ;
- Electronic excitation: ??