
Geant4 Develop, Build and Test
Tools Update
Ben Morgan

GitLab Status

● Passed 3000 MRs, ~600 since
11.0!

● CERN plans to move from
GitLab Enterprise to
Community over next year
due to license costs

● Monitoring this, but expect all
functionality used by Geant4
will be retained or locally
implemented by CERN

2

Merge Request Process:
Documentation

A living document, so Issues/MRs
to improve it are very welcome

3

https://gitlab.cern.ch/geant4/geant4-dev/-/blob/master/CONTRIBUTING.rst

Writing good Commit
Messages and MR Descriptions

Really important for MR
process and later maintenance

4

Use the Review Process!
Fast and effective way to work
together to clarify changes, and
improve Geant4 during development5

Can even
suggest the
fix!

Use Issues for Problems and
Discussion and Work Items

You can link MRs to Issues! Start
discussion in Issue, code in MR,
Issue closes when MR(s) merged 6

Issues vs Merge Requests vs Reviews

● Has been some discussion about when/if to submit MR vs an Issue, especially for cross
working group topics.

● There is no absolute rule here, only guidance:
○ Never hesitate to submit a MR for any category, as it will always be seen/reviewed by

coordinators…
○ … but they are free to outright reject, or heavily review it, or ask for further discussion

through an Issue
○ It’s on you, the developer, to balance whether to start discussion on a change in an Issue,

or just submit in a MR, depending on the scale/amount of work involved
● Clear collaboration-wide communication is key, and whilst discussions might start over

coffee/in the office/email, progression to actual development work should be recorded,
somehow, in GitLab
○ Also valuable for “we discussed this before and it was a no-go, see here”
○ GitLab Boards/Milestones can also be valuable to track what’s in progress/done.

7

Developer Tools: CODING_GUIDELINES.rst

● Updated over past year to bring together existing material/knowledge on a range of
day-to-day development topics for Geant4

● C++ Use and Guidelines
○ Recommended use of C++ language/features
○ Code formatting with clang-format

● Geant4/CMake Build System
○ Code organization into “source code modules” and libraries
○ Managing “source code module” dependencies

● Static Analysis/Debugging
○ Use of Coverity
○ Use of clang-tidy
○ Sanitizers and backtracking

● As always it’s a living document, so MRs/Issues on it very welcome as is discussion this week!
This includes potential final home(s) for the material, like file, web, wiki etc.

8

● New section in guidelines doc on how to write
sources.cmake for your module(s)

○ geant4_add_module,
geant4_module_link_libraries …

9

Developer Tools 1:
Source Code Modules # - sources.cmake

geant4_add_module(G4foo
 PUBLIC_HEADERS
 G4Foo.hh
 SOURCES
 G4Foo.cc
)

geant4_module_link_libraries(G4foo
 PUBLIC G4globman
 PRIVATE G4intercoms
)

● New section in guidelines doc on how to write
sources.cmake for your module(s)

○ geant4_add_module,
geant4_module_link_libraries …

● New geant4_module_check.py script to
query/check module interfaces, e.g.

○ What module provides header “X”?

○ Are there cycles in module dependencies?

○ Are module dependencies correct?

● Checks added as tests in Continuous and
Nightly CI, full instructions on running in local
developer builds in CODING_GUIDELINES.rst

10

Developer Tools 1:
Source Code Modules

● CMake “modular” build support added as part of work towards restructuring
composition of Geant4 libraries from source code modules
○ “Modular” build run only in Continuous CI to confirm no missing transient

dependencies between source code modules (with 1 library == 1 module)
○ Full work on library restructure delayed due to lack of time (but see GitLab #122)
● This CI build, plus the checks CMake and geant4_module_check.py implement,

make the GNUmake system to build/test Geant4 obsolete
● All GNUmakefiles under source/ and tests/ will therefore be removed after

the 11.1 Release.
● The GNUmake system itself will be retained, albeit still deprecated, for building

user applications
○ Full removal here depends on implementing pkg-config files for Geant4, which is

easiest done as part of the library restructure

11

Developer Tools 2: Modularization and GNUMake

https://gitlab.cern.ch/geant4/geant4-dev/-/issues/122

● Tool for formatting C++ code, style from
.clang-format file in project root

● Why? Consistency and clarity across the
project so focus is what code does

○ Geant4 is not consistent, in some places
not even within single files!

● Easy to disable, e.g. for array/matrix data,
with special comment blocks

● .clang-format developed to match
de-facto Geant4 style, minimize changes.

● Full rollout post-11.1 release?
○ Single one-off reformat or gradual?
○ Tooling in Git/GitLab to assist, e.g. “Do:

reformat” MR command

12

Developer Tools 3:
clang-format

https://gitlab.cern.ch/geant4/geant4-dev/-/blob/master/.clang-format
https://clang.llvm.org/docs/ClangFormat.html

Developer Tools 4:
clang-tidy
● Tool for linting C++ code with a set of

checks for “better practice” such as
clarity, modernity, performance.
○ Checks in .clang-tidy file or supplied

on command line
● Why? Assist developer to identify code

that could be improved
○ Consistency as well - checks can

match/complement coding guidelines

○ Like -format, can disable if required
● Gradual rollout through kernel categories,

testing/iterating on checks and guidelines
○ See CODING_GUIDELINES.rst for use

guide and current recommended,
suggested, optional checks

13

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/checks/list.html

CMake option GEANT4_BUILD_SANITIZER
to select Address, Thread or UB. More info
in CODING_GUIDELINES.rst 14

Developer Tools 5: Sanitizers

https://gitlab.cern.ch/geant4/geant4-dev/-/blob/master/CODING_GUIDELINES.rst

Packaging: Official packages, CPack, DEB, RPM

● Official packages (also discussed in Issue #80)
○ Available in Arch Linux, Conda, Gentoo Linux, Mac Ports, NixOS, and Spack

● CMake build system can build binaries using CPack
○ Just run cpack -G TYPE, where TYPE is one of TGZ, DEB, RPM, etc
○ Needs appropriate config for dependencies to be added automatically

● Used RPM Packaging Guide to create starting point for official distribution
○ Created SPEC file with geant4, geant4-{data,devel,examples} packages
○ Published experimental RPM repo for CS8 built from the SPEC file at

http://lcgpackages.web.cern.ch/lcgpackages/test/geant4
○ Post in the Geant4 Forum to let users try out the experimental packages
○ RPM packages can be used for building container images with Geant4

● Needs volunteers and effort to maintain and evolve
○ Community effort as well, but good to have official packages for common platforms

15 Credit: Guilherme Amadio

https://gitlab.cern.ch/geant4/geant4-dev/-/issues/80
https://aur.archlinux.org/packages/geant4
https://anaconda.org/conda-forge/geant4
https://packages.gentoo.org/packages/sci-physics/geant
https://ports.macports.org/port/geant4/details/
https://github.com/NixOS/nixpkgs/tree/nixos-unstable/pkgs/development/libraries/physics/geant4
https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/geant4/package.py
https://rpm-packaging-guide.github.io/
https://cern.ch/amadio/geant4/geant4.spec
http://lcgpackages.web.cern.ch/lcgpackages/test/geant4
https://geant4-forum.web.cern.ch/t/experimental-binary-packages-for-centos-stream-8/7907

● Original work by A. Dotti and W. Takase (similar efforts by J. Madsen)
● x86 and ARM images for Geant4 from C. Mancini:

○ https://hub.docker.com/r/carlomt/geant4 (Images)
○ https://github.com/carlomt/docker-geant4 (Sources)

● Data separate to keep image size small, mounted into container at runtime
● Example of building an image for a user application on top of this:

○ https://github.com/carlomt/docker-dicom-g4example
● How best to use/continue this line of packaging?

○ Could be useful for training, testing/profiling
○ RPM/Deb/etc better as “official” binaries, allowing easier user

customization of their Docker images
○ Issue #80 on GitLab to discuss further

16

Packaging: Geant4 Docker Images

Credit: Carlo Mancini

https://hub.docker.com/r/carlomt/geant4
https://github.com/carlomt/docker-geant4
https://github.com/carlomt/docker-dicom-g4example
https://gitlab.cern.ch/geant4/geant4-dev/-/issues/80

Dockerfile

FROM cern/cs8-base

RUN dnf update -y dnf install -y epel-release

COPY geant4.repo /etc/yum.repos.d/geant4.repo

RUN dnf install -y geant4-devel

Contents of geant4.repo

[geant4]

name=Geant4 Collaboration

baseurl=http://lcgpackages.web.cern.ch/lcgpackages/test/geant4

enabled=1

gpgcheck=0

priority=10

Image pushed to Docker Hub, try it with docker run -it geant4/geant4 (note: very big! 6.2GB size total)

17

Geant4 Dockerfile using experimental RPMs

Credit: Guilherme Amadio

18

Key Points • Will monitor changes to CERN GitLab version, but
no cause for concern at present

• CODING_GUIDELINES.rst document updated with
C++, CMake, and Tooling guides

• Feedback, input very welcome
• Significant work on binary packaging, needs

volunteers and effort to take it forward

• One more thing…
• … modernization topics and ideas to discuss

https://gitlab.cern.ch/geant4/geant4-dev/-/blob/master/CODING_GUIDELINES.rst

Maybe controversial, but intended to
motivate discussion this week! Includes
some that are likely for next major release -
yes, should start thinking about this now!19

Longer Term Topics: Code
Evolution and Spring Clean

● Move per-category test/ directories
from source/ to tests/
○ Clearer separation of source and test code

○ Identify obsolete/redundant tests, or those
suitable for use in CI

○ Identify potential for use of unit testing using,
e.g. Google Test

● Final arbiter of “correctness” the
integration and validation tests, but
unit tests provide an extra layer of
defence or to add regression checks.

● GitLab #137 for discussion

20

Organizing Test Code
- source/
 - .. move testing code from here to ..
- tests/
 - tools/
 - .. as is
 - integration/
 - test00/
 - .. all current `testXY`
 - examples/
 - CMakeLists.txt
 - .. current `tests/ctests/CMakeLists.txt`
 - source/
 - global/
 - management/
 - .. source/global/management/test files
 - .. or under "integration" if appropriate

https://gitlab.cern.ch/geant4/geant4-dev/-/issues/137

● Interface docstrings do exist, but are
incompatible with Doxygen as strings
appear after the declaration (tossed a coin
and lost…)

● Initial benefit for developers:
○ Integration with IDE Intellisense
○ Clarify interface contracts, e.g. in/out

params, ownership, pre/post conditions
● Longer term, Doxygen docs would nicely

complement other Docs and LXR for users
● Can be done little by little (and mostly copy

paste!), focus on core kernel/user interfaces
● GitLab #87 for Discussion

21

Doxygen-style C++
interface docstrings

https://gitlab.cern.ch/geant4/geant4-dev/-/issues/87

● How many of our ~3500 headers are
for interfaces never used/for use
outside of the same module?
○ Canonical example: messengers

● Hiding such “private” interfaces:
○ Clarifies interface to library consumers

(don’t need to understand that .hh)

○ Potential for (small) performance
improvements from symbol hiding

○ Greater freedom in implementation:
no user interface change!

● Start reviewing your modules to see
if it has private interfaces.

22

Hiding Implementation
Details

Clarifying Ownership, reducing Globals

● Toolkit uses raw pointers (+new/delete) extensively, canonical use case being inheritance
(ptr-to-base), some others - all valid, but…
○ Ownership of new-d resource not always obvious, even confusing, especially when

passing raw pointers around
○ Some awkwardness in code with collections of raw pointers (const-ness/de-refing)

● A few things we could start doing/investigating/profiling:
○ Values/std::unique_ptr/std::optional provide as cleaner solution in some places?
○ Docstrings to clarify ownership of in/out raw pointers?
○ Add interfaces for, e.g. collection of owned raw pointers, or use/import tools like

GuidelineSupportLibrary or ranges (range-v3/C++20)?
● A related topic is the toolkit’s extensive use of globals/statics (as raw ptrs!), which can lead to

unexpected behaviour, so where and how could we reduce use of these?
○ Long term, but doesn’t mean we shouldn’t start thinking about it!
○ GitLab #140 for initial discussion

23

https://github.com/microsoft/GSL
https://github.com/ericniebler/range-v3
https://en.cppreference.com/w/cpp/ranges
https://gitlab.cern.ch/geant4/geant4-dev/-/issues/140

Questions, Discussion

24

