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VecGeom@GPU : current limitations
► The current GPU implementation was extensively tested in AdePT and 

improved in many aspects over the last 2 years
● Initialization time, memory footprint, navigation correctness and optimization, support for 

single precision

► Some major issues that cannot be “tweaked” still remain
● The implementation is CUDA specific and non-portable

▹ non-NVIDIA hardware currently not accessible
● Performance is hindered by several factors:

▹ virtual function calls
▹ code complexity making geometry kernel code register hungry -> limits achievable 

(efficient) warp concurrency on the device
▹ divergence coming for very different computation paths in the same kernel -> limits the 

low-level thread concurrency

2



Divergence increases with complexity…

► Moving from simple to 
complex geometry : 
longer stalls within warps 
for the same SM compute

► One of the potential show 
stoppers for GPU vs. CPU 
simulation efficiency in 
complex setups  
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Navigation workflow per track query

4

Level
Navigator

Optimizer
(BVH/voxel)

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Reduction Result

state = /Lvl_0/Lvl_1/…

Locate (recursion)

N logN

candidates

*input s
et d

iverg
ence 

(g
eometry

 defin
itio

n)

*inte
rn

al 

diverg
ence 

(tr
ee re

ductio
n)

*non-portable 

*complexity 
divergence 
(20 solids + Booleans)

in/out, hit/miss, 
min(distance) 

using volume 
bounding boxes 

can we reduce these 
*sources of inefficiency ?

new state, 
distance, safety 

very little internal 
parallelism exposed
-> track parallelism

volume 
hierarchy



Addressing the problem: surface models
► Rationale: factoring the navigation 

problem at lower level
● More simple and uniform code, even if code 

path is sometimes longer
● Less branching for primitive surfaces than for 

primitive solids
● Allow reducing the number and size of 

divergent critical sections

► Each face of a solid described as 
half-space + frame = FramedSurface

● Same functionality as triangles in a tessellation, 
but providing accurate modelling 

● Box: 6 x (plane + window frame)
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CommonSurface - the navigation primitive 

► In Geant models many touchable volumes can have 
common surfaces

● ancestor - descendents, neighbour volumes, descendents of 
neighbours, …

► Each touchable contributes with a FramedSurface 
to a single Side of the common surface

► The model is composed by CommonSurface objects 
associated to touchables

● provide transitioning between touchable states when 
crossing sides
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Potential for work reduction
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Navigation for a bounded surface model
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Header-based implementation

9

branch: surface_model
folder:   VecGeom/surfaces

GeoManager BrepHelper

Visitor
volume 
hierarchy

Create
CommonSurface

Model.h

SurfData_t
transformations
surface data
mask data, …
candidate_lists/nav 
index

surface data storage 
(index-based)

CreateCandidates

PlanarImpl.h

ConicalImpl.h

SphericalImpl.h

CylindricalImpl.h

FrameMasks.h

Equations.hNavigator.h

vgbrep::
protonav

CPU GPU

model converter



Memory and performance
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► The first implementation for distance and safety computation available
● Box, Tube & Trd tested so far

► Memory footprint scales with number of physical volumes
● Compared to equivalent volume-based flattened hierarchy, use average #sides as multiplier
● Can reach GByte range for complex setups
● May require multi-level surface scenes, trading-off CPU for lower memory footprint

► Performance per solid comes with small overhead on CPU for simple solids
● Same checks but data not local

► Improvements observed when relocation becomes important
● Relocation is built-in for the surface model (no extra penalty)

► Too early for more elaborated performance statements now



Next steps
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► Ready for implementing GPU awareness
● Header-only implementation, POD types with indices to be transferred
● No additional code should be needed except function annotations & copy to GPU 
● The data store is percolated through interfaces

► Comparative test of performance in AdePT for increasing geometry 
complexity

● Plug-in into geometry-agnostic examples comparing with the volume approach

► If successful, expand the model and implement the missing features 
● Evolving the model to support more solids now much easier
● Challenges foreseen for the Boolean solid implementation, which may need to map into a 

volume-based approach



Backup: implementation details
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Reference system 

► In practice, touchable volumes may be translated and/or rotated
● So are their surfaces, and we are not dealing with just planes
● The intersection of a ray with a rotated tube or cone is complicated…

▹ …without axis-aligning the tube

► We need to represent surfaces in the most simple reference system
● As we do it for primitive solids
● So we need to support local references: 

▹ RealSurface = UnplacedSurface + transformation
● disadvantage: needs systematic coordinates conversion to solve the equations
● advantages: reduces the algorithm complexity, but also the size of surface data and number 

frame types to be supported
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UnplacedSurface

► Representing the half-space (infinite) surface support
► Pick simplest representations for all surface types

● Plane: use systematically (z = 0) planes
▹ surface data - none

● All second order:: Z-axis aligned, as the Geant primitives
▹ surface data - tube (radius at z=0), cone (radius at z=0 and slope), 

torus (ring + torus radii), …

► Functionality: ray intersect, safety, inside (half-space)
► Needs to provide a normal for any point on the surface

enum SurfaceType { kPlanar, [kCylindrical, kConical, kSpherical, kTorus,] / kGenSecondOrder };
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Frames

► Delimiting the real object side imprint on the infinite 
unplaced surface

► Typically a set of ranges in two coordinates, 
depending on the surface/frame types

● Can also be 1D (e.g RangeZ)

► Functionality: inside/outside frame
● Needs conversion of cartesian coordinates of the surface 

point to the appropriate system
● Simple checks: e.g. rangeX.Inside(x) && rangeY.Inside(y)

enum FrameType {kRangeZ, kRangeCyl, kRangeSph, kWindow, kTriangle, … }
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FramedSurface - the base primitive

► For navigating we need to deal with touchable object surfaces
● UnplacedSurface + Frame + Transformation3D + navigation state index = FramedSurface

► The transformation describes the global object positioning in a scene 
● The “world” volume is the natural scene, because a navigation state relates to that.
● Complex geometries may need composed scenes (e.g. 2 levels). In such case a logical volume 

becomes a scene, and navigation states have to be represented by tuples (e.g. <world_index, 
subscene_index> which can be mapped to a regular navigation state)

► Functionality:
● dispatch to UnplacedSurface + Frame via the Transformation3D
● connect a surface to the geometry navigation state
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Side
► Collection of FramedSurfaces
► Left/right arbitrary

● The first FramedSurface used to create a 
CommonSurface defines “left side” and the common 
surface reference frame

► Identical frames on the same side are detected 
and only the ones matching deeper states kept

► FramedSurfaces are sorted highest depth first
● priority to highest depth volumes

► The search of frames to be checked when 
traversing a side have rules imposed by the 
geometry hierarchy/containment (see further)
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Constructing common surfaces
► Check if translations are compatible

tdiff = t1.Translation() - t2.Translation()
ldir = t1.TransformDirection(tdiff);

● planes: abs(ldir.z()) < tolerance
● tubes: R1 ~ R2 && ldir.Perp2() < toleranceSq

► Check if rotations are compatible
z1 = t1.InverseTransformDirection{0,0,1});
z2= t2.InverseTransformDirection({0,0,1});
ApproxEqualVector(z1.Cross(z2), {0, 0, 0})

► Finding if the side is matching
flip = z1.Dot(z2) < 0;
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Transitions through surfaces

► Task 1: in_state → surf_candidate (O(ncandidates) if no optimization)
● We pre-compute a list of candidate surfaces that can be crossed per navigation state index. 

This gives direct access to surface id, side and index on the side
● Check if the side is an exit side for the current state (compare current state with common 

surface state)
● Propagate the current point to the common surface and store its local coordinates

► Task 2: check if the current volume is exited
● The exit side contains a FramedSurface with the same state as current one
● This frame has to contain the propagated point
● None of the frames with higher or equal state depth must contain this point (otherwise the 

exit point is in a daughter of the current volume)
● Cache distance and set out_state to be the default surface state
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Transitions through surfaces

► Task 3: if the side is an entering side, check if any 
FramedSurface is actually hit

● If there is a cached parent frame for the side, check it first: if 
point not in the frame → no hit

● If not, the bounding range must be hit
● If yes, then perform a search over all frames on the entering 

side and cache result (O(n) complexity if no optimization)

► Task 4: Perform task 3 if needed in case the closest 
valid surface was exiting the state
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First implementation
► Header-only, available in branch surface_model
► Model.h

● Data model definition. Indexed component access. Surface store passed via interfaces.

► BrepHelper.h
● Helper building the data structures based on a closed VecGeom geometry
● Filling  template <typename Real_t> struct SurfData representing the store for the surface 

model data
● All data indexed, targeting equivalence host/device

► Equations.h
● Implementations for surface solvers (not implemented)

► Navigator.h
● vgbrep::protonav namespace implementing navigation methods
● Currently just ComputeStepAndHit
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TestEm3
► Shooting random points/directions in 

the calorimeter
► Locating in_state using 

NewSimpleNavigator
► Computing distance to boundary and 

out_state
► Validating against NewSimpleNavigator
► Comparing performance

● Crossing internal surfaces more efficient 
(relocation not scaling with nlayers)

● Shooting from outside still slow, but several 
helpers still missing (e.g. normal checks)
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Next steps

► This is just a first try, and the model seems to “hold” together and interface 
well with the current vecgeom approach

► Important functionality missing, in particular global location (which now relies 
on the current approach)

● Need to add normals and use them in navigation, safety computation

► Second order surface types and most frame types to be implemented
► Conversion now possible only for boxes -> summer project to do other 

shapes
► No treatment yet for Boolean surfaces

● Non-triviaI, planning to inspire from Orange
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