
Alternative VecGeom GPU
support

andrei.gheata@cern.ch

VecGeom@GPU : current limitations
► The current GPU implementation was extensively tested in AdePT and

improved in many aspects over the last 2 years
● Initialization time, memory footprint, navigation correctness and optimization, support for

single precision

► Some major issues that cannot be “tweaked” still remain
● The implementation is CUDA specific and non-portable

▹ non-NVIDIA hardware currently not accessible
● Performance is hindered by several factors:

▹ virtual function calls
▹ code complexity making geometry kernel code register hungry -> limits achievable

(efficient) warp concurrency on the device
▹ divergence coming for very different computation paths in the same kernel -> limits the

low-level thread concurrency

2

Divergence increases with complexity…

► Moving from simple to
complex geometry :
longer stalls within warps
for the same SM compute

► One of the potential show
stoppers for GPU vs. CPU
simulation efficiency in
complex setups

3

CMS

TestEm3

Navigation workflow per track query

4

Level
Navigator

Optimizer
(BVH/voxel)

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Reduction Result

state = /Lvl_0/Lvl_1/…

Locate (recursion)

N logN

candidates

*input s
et d

iverg
ence

(g
eometry

 defin
itio

n)

*inte
rn

al

diverg
ence

(tr
ee re

ductio
n)

*non-portable

*complexity
divergence
(20 solids + Booleans)

in/out, hit/miss,
min(distance)

using volume
bounding boxes

can we reduce these
*sources of inefficiency ?

new state,
distance, safety

very little internal
parallelism exposed
-> track parallelism

volume
hierarchy

Addressing the problem: surface models
► Rationale: factoring the navigation

problem at lower level
● More simple and uniform code, even if code

path is sometimes longer
● Less branching for primitive surfaces than for

primitive solids
● Allow reducing the number and size of

divergent critical sections

► Each face of a solid described as
half-space + frame = FramedSurface

● Same functionality as triangles in a tessellation,
but providing accurate modelling

● Box: 6 x (plane + window frame)

5

6x (plane + window)

CommonSurface - the navigation primitive

► In Geant models many touchable volumes can have
common surfaces

● ancestor - descendents, neighbour volumes, descendents of
neighbours, …

► Each touchable contributes with a FramedSurface
to a single Side of the common surface

► The model is composed by CommonSurface objects
associated to touchables

● provide transitioning between touchable states when
crossing sides

6

G
a
p

Ab
so

G
a
p

Ab
so

CALO

Layer_i Layer_i+1

World

left_side right_side

World/
Calo/L
ayer_i/
Abso

World/
Calo/L
ayer_i+
1/Gap

Potential for work reduction

7

volumes, bbox optimized

surfaces

surfaces, bbox optimized

Components to be thoroughly checked,
using (or not) bbox optimizations. Surfaces
allow for fast exclusion based on
normal-direction dot product sign

Navigation for a bounded surface model

8

Surface
Navigator

Optimizer
(BVH/voxel)

Half-space
dispatcher

Planar

Second
order

Frame
dispatcher Reduction

state = /Lvl_0/Lvl_1/…

~8N ~3 logN

Fast mask-like
checks

using frame
bounding boxes

better balanced input per
particle due to flattening
and mixing surfaces from
different volumes

new state,
distance, safety

Relocation is free lunch for
surface frame checking, no
recursion needed

volume
hierarchy

Window

Ring

CylPhi

Triangle

Fast solvers

flattened
surface
hierarchy

compile time,
portable

compile time,
portable

faster divergent sections
with fewer branches (2
half-space types and 6-8
masks) (?)

Header-based implementation

9

branch: surface_model
folder: VecGeom/surfaces

GeoManager BrepHelper

Visitor
volume
hierarchy

Create
CommonSurface

Model.h

SurfData_t
transformations
surface data
mask data, …
candidate_lists/nav
index

surface data storage
(index-based)

CreateCandidates

PlanarImpl.h

ConicalImpl.h

SphericalImpl.h

CylindricalImpl.h

FrameMasks.h

Equations.hNavigator.h

vgbrep::
protonav

CPU GPU

model converter

Memory and performance

10

► The first implementation for distance and safety computation available
● Box, Tube & Trd tested so far

► Memory footprint scales with number of physical volumes
● Compared to equivalent volume-based flattened hierarchy, use average #sides as multiplier
● Can reach GByte range for complex setups
● May require multi-level surface scenes, trading-off CPU for lower memory footprint

► Performance per solid comes with small overhead on CPU for simple solids
● Same checks but data not local

► Improvements observed when relocation becomes important
● Relocation is built-in for the surface model (no extra penalty)

► Too early for more elaborated performance statements now

Next steps

11

► Ready for implementing GPU awareness
● Header-only implementation, POD types with indices to be transferred
● No additional code should be needed except function annotations & copy to GPU
● The data store is percolated through interfaces

► Comparative test of performance in AdePT for increasing geometry
complexity

● Plug-in into geometry-agnostic examples comparing with the volume approach

► If successful, expand the model and implement the missing features
● Evolving the model to support more solids now much easier
● Challenges foreseen for the Boolean solid implementation, which may need to map into a

volume-based approach

Backup: implementation details

12

Reference system

► In practice, touchable volumes may be translated and/or rotated
● So are their surfaces, and we are not dealing with just planes
● The intersection of a ray with a rotated tube or cone is complicated…

▹ …without axis-aligning the tube

► We need to represent surfaces in the most simple reference system
● As we do it for primitive solids
● So we need to support local references:

▹ RealSurface = UnplacedSurface + transformation
● disadvantage: needs systematic coordinates conversion to solve the equations
● advantages: reduces the algorithm complexity, but also the size of surface data and number

frame types to be supported

13

UnplacedSurface

► Representing the half-space (infinite) surface support
► Pick simplest representations for all surface types

● Plane: use systematically (z = 0) planes
▹ surface data - none

● All second order:: Z-axis aligned, as the Geant primitives
▹ surface data - tube (radius at z=0), cone (radius at z=0 and slope),

torus (ring + torus radii), …

► Functionality: ray intersect, safety, inside (half-space)
► Needs to provide a normal for any point on the surface

enum SurfaceType { kPlanar, [kCylindrical, kConical, kSpherical, kTorus,] / kGenSecondOrder };

14

x

y

z

x

y

z

z = 0

x2 + y2 = R2

Frames

► Delimiting the real object side imprint on the infinite
unplaced surface

► Typically a set of ranges in two coordinates,
depending on the surface/frame types

● Can also be 1D (e.g RangeZ)

► Functionality: inside/outside frame
● Needs conversion of cartesian coordinates of the surface

point to the appropriate system
● Simple checks: e.g. rangeX.Inside(x) && rangeY.Inside(y)

enum FrameType {kRangeZ, kRangeCyl, kRangeSph, kWindow, kTriangle, … }

15

range_x

range_y

range_φ

range_z

range_R

(x, y) -> R +

FramedSurface - the base primitive

► For navigating we need to deal with touchable object surfaces
● UnplacedSurface + Frame + Transformation3D + navigation state index = FramedSurface

► The transformation describes the global object positioning in a scene
● The “world” volume is the natural scene, because a navigation state relates to that.
● Complex geometries may need composed scenes (e.g. 2 levels). In such case a logical volume

becomes a scene, and navigation states have to be represented by tuples (e.g. <world_index,
subscene_index> which can be mapped to a regular navigation state)

► Functionality:
● dispatch to UnplacedSurface + Frame via the Transformation3D
● connect a surface to the geometry navigation state

16

Side
► Collection of FramedSurfaces
► Left/right arbitrary

● The first FramedSurface used to create a
CommonSurface defines “left side” and the common
surface reference frame

► Identical frames on the same side are detected
and only the ones matching deeper states kept

► FramedSurfaces are sorted highest depth first
● priority to highest depth volumes

► The search of frames to be checked when
traversing a side have rules imposed by the
geometry hierarchy/containment (see further)

17

bounding range
pre-computed

parent frame id
cached (if any)

framed surfaces

Constructing common surfaces
► Check if translations are compatible

tdiff = t1.Translation() - t2.Translation()
ldir = t1.TransformDirection(tdiff);

● planes: abs(ldir.z()) < tolerance
● tubes: R1 ~ R2 && ldir.Perp2() < toleranceSq

► Check if rotations are compatible
z1 = t1.InverseTransformDirection{0,0,1});
z2= t2.InverseTransformDirection({0,0,1});
ApproxEqualVector(z1.Cross(z2), {0, 0, 0})

► Finding if the side is matching
flip = z1.Dot(z2) < 0;

18

tdiff

Transitions through surfaces

► Task 1: in_state → surf_candidate (O(ncandidates) if no optimization)
● We pre-compute a list of candidate surfaces that can be crossed per navigation state index.

This gives direct access to surface id, side and index on the side
● Check if the side is an exit side for the current state (compare current state with common

surface state)
● Propagate the current point to the common surface and store its local coordinates

► Task 2: check if the current volume is exited
● The exit side contains a FramedSurface with the same state as current one
● This frame has to contain the propagated point
● None of the frames with higher or equal state depth must contain this point (otherwise the

exit point is in a daughter of the current volume)
● Cache distance and set out_state to be the default surface state

19

Transitions through surfaces

► Task 3: if the side is an entering side, check if any
FramedSurface is actually hit

● If there is a cached parent frame for the side, check it first: if
point not in the frame → no hit

● If not, the bounding range must be hit
● If yes, then perform a search over all frames on the entering

side and cache result (O(n) complexity if no optimization)

► Task 4: Perform task 3 if needed in case the closest
valid surface was exiting the state

20

propagated

First implementation
► Header-only, available in branch surface_model
► Model.h

● Data model definition. Indexed component access. Surface store passed via interfaces.

► BrepHelper.h
● Helper building the data structures based on a closed VecGeom geometry
● Filling template <typename Real_t> struct SurfData representing the store for the surface

model data
● All data indexed, targeting equivalence host/device

► Equations.h
● Implementations for surface solvers (not implemented)

► Navigator.h
● vgbrep::protonav namespace implementing navigation methods
● Currently just ComputeStepAndHit

21

TestEm3
► Shooting random points/directions in

the calorimeter
► Locating in_state using

NewSimpleNavigator
► Computing distance to boundary and

out_state
► Validating against NewSimpleNavigator
► Comparing performance

● Crossing internal surfaces more efficient
(relocation not scaling with nlayers)

● Shooting from outside still slow, but several
helpers still missing (e.g. normal checks)

22

G
a
p

Ab
so

G
a
p

Ab
so

G
a
p

Ab
so

Next steps

► This is just a first try, and the model seems to “hold” together and interface
well with the current vecgeom approach

► Important functionality missing, in particular global location (which now relies
on the current approach)

● Need to add normals and use them in navigation, safety computation

► Second order surface types and most frame types to be implemented
► Conversion now possible only for boxes -> summer project to do other

shapes
► No treatment yet for Boolean surfaces

● Non-triviaI, planning to inspire from Orange

23

