

« molecularDNA » example

Hoang Tran

Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France

Geant4-DNA for radiobiology

Extension of the Geant4 Monte Carlo simulation toolkit for radiobiology

- Track structure code: simulate each particle-matter interaction
 - ➤ physical stage
- Simulate the production and tracking of radiolytic species, together with their mutual interactions
 - > physico-chemical and chemical stages
- ➤DNA-scale geometries

MolecularDNA: can simulate early DNA damage using only Geant4 macro commands - No C++ skills needed

Simulation of physics, physico-chemistry and chemistry processes in DNA geometries.

Physical stage

G4EmDNAPhysics_option2, G4EmDNAPhysics_option4 or G4EmDNAPhysics_option6 constructors are recommended to use in the molecularDNA example.

Chemistry stage

Independent Reaction Times (« IRT ») approach

- From the 1980's by Clifford, Green et al., widely used today.
- Iterative process where the approximation of « independent pairs » is assumed: calculates the reaction times between all possible pairs of reactive species, as if they were isolated.
- No longer necessary to diffuse the molecular species and to calculate the possible reactions between the species at each time step.
- A « synchronous » alternative hybrid version (« IRT-sync ») which gives all spatio-temporal info. on radicals required for combination with geometries

Geometry model

Design principle

The molecularDNA application was made to make it easy to define a DNA geometry, and then place it repeatedly to model a complex geometry at large scales, as below.

It will join chains together correctly even when placement volumes are rotated along the lines of the image

Damage model

Direct Damage occurs when energy from physical processes is deposited near a DNA molecule. In moleculardna, we associate damage either with a 'strand' molecule (sugar or phosphate placement) or a base molecule.

Indirect damage is scored when a chemical reaction leads to a strand break.

Strand breakage scheme (Nikjoo et al.1997) DNA segment complexity can be considered

Geometry library

Benchmarking and will need more...

1.00E-15

10

100

1000

10000

Fragment Length (kbp)

Documentations

Built using Just The Docs.

This site uses Just the Docs, a documentation theme for Jekyli

希 FractalDN

Structure Models

DNA Models

API Reference

Examples

希 » FractalDNA

View page source

FractalDNA

FractalDNA is a Python package to make DNA geometries that can be joined together like jigsaw puzzles. Both simple, sections of DNA and Solenoidal DNA can be built. This module was built to enable DNA-level simulations to be run in Geant4-DNA, part of the Geant4 project.

Structure models define the large scale structure of DNA, seeded from fractals. An example seeding fractal is below:

DNA Models provide straight and curved segments that can come together to make DNA for use in simulations.

Documentation is divided into three main sections, focused on building DNA models, high level structure models, and then some notebook examples. showing how the code works.

Structure Models

DNA Models

Thank you to contributors

- J.M.C. Brown
- K. Chatzipapas
- M. Dordevic
- S. Incerti
- M. Karamitros
- N. Lampe
- D. Sakata
- W.G. Shin