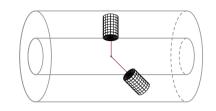


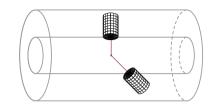
parameterisations/Par04 example

Dalila Salamani Anna Zaborowska

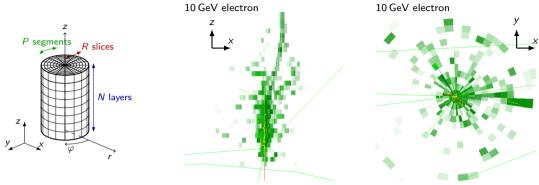
CERN

27th Geant4 Collaboration Week, 27.09.2022

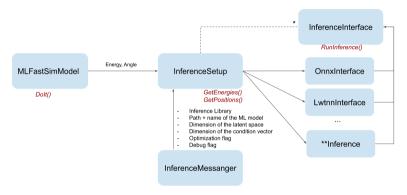

- examples/extended/parameterisations/Par04 new example since Geant4 11.0 release
- Detector geometry is simplistic and easy to configure
- Collider-style concentric cylinders with up to two materials (active and optionally passive)


- examples/extended/parameterisations/Par04 new example since Geant4 11.0 release
- Detector geometry is simplistic and easy to configure
- Collider-style concentric cylinders with up to two materials (active and optionally passive)
- Particle direction and position is measured at the entrance to calorimeter (many possible ways to do it: we chose fast sim model that is attached to calorimeter)

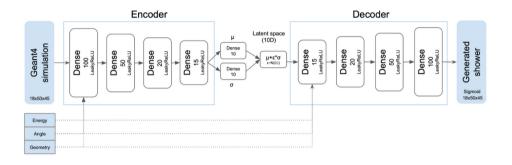
- examples/extended/parameterisations/Par04 new example since Geant4 11.0 release
- Detector geometry is simplistic and easy to configure
- Collider-style concentric cylinders with up to two materials (active and optionally passive)
- Particle direction and position is measured at the entrance to calorimeter (many possible ways to do it: we chose fast sim model that is attached to calorimeter)
- Scoring of energy deposits is done relative to the particle direction
- Similar granularity 'pictures' are obtained independently on angle



- examples/extended/parameterisations/Par04 new example since Geant4 11.0 release
- Detector geometry is simplistic and easy to configure
- Collider-style concentric cylinders with up to two materials (active and optionally passive)
- Particle direction and position is measured at the entrance to calorimeter (many possible ways to do it: we chose fast sim model that is attached to calorimeter)
- Scoring of energy deposits is done relative to the particle direction
- Similar granularity 'pictures' are obtained independently on angle
- Granularity of shower deposition is configurable



Geant4 Par04 example: showers


- Example uses 0.3 mm Si and 1.4 mm W layers
- Readout granularity is $\Delta r \times \Delta \varphi \times \Delta z = 2.3\,\mathrm{mm} \times \frac{2\pi}{50} \times 3.4\,\mathrm{mm}$ aiming for $\Delta r \approx 0.25\,R_M$ and $\Delta z \approx 0.6\,X_0$
- Number of readout cells is $R \times P \times N = 18 \times 50 \times 45$ aiming for 95% containment of 1 TeV particles
- Open access dataset for SiW (and scintillator-Pb) released 10.5281/zenodo.6082201
- This dataset is a base of ML studies, including CaloChallenge.

Geant4 Par04 example: inference within C++ framework

- Fast simulation with ML within Geant4
- Demonstrates how to incorporate inference libraries (ONNX Runtime, LWTNN)
- Par04 can run full and fast simulation (if any of the inference libraries is available, e.g. via LCG)

ML model

Variational autoencoder that is a subject of study in our group. Provided model is trained on the specified geometry, it **requires changes with the changes to the geometry**. More details on work on generalisation are discussed in our webpage: g4fastsim.web.cern.ch

4/5

Recent changes and WIP

- Bug fixes, especially with visualization (merged to geant4-dev)
- Python scripts for training (merged to geant4-dev)
- Integration of another inference library (Torch) as a result of AlDAinnova hackathon (thanks to all colleagues from DESY: Engin Eren, Peter McKeown, and the LHCb: Michal Mazurek)
- GPU support, inference optimisation, as a result of summer students projects (thanks to Priyam Mehta and Maciej Dragula)

All of the above should be included in the next release.