Open and new requirements: medical and bio science

URs in progress: tracked in the Geant4 Requirements Tracker

URs emerged from last year workshop but not included in Jira yet

New URs

A/Prof Susanna Guatelli, Centre For Medical and Radiation Physics, University of Wollongong, Wollongong, Australia

In progress (1)

- UR-52: Make EPICS2017 models available in Geant4 (electrons, photons) as an alternative to Livermore (S. Incerti)
 - Li Z et al (2022) Implementation of the EPICS2017 database for photons in Geant4, Physica Medica, 95: 94-115.
 - Now available for photons, since Geant4 11.0
 - It was decided not to update electron models (similar to Livermore)
 - This UR could then be closed
 - More information in the last 2 slides
- UR-63: To have an extended example to retrieve directly from the simulation Auger electron energy and associated atomic transition (S. Guatelli)
 - To start
- UR-62: Model for positronium creation and annihilation (V. Ivantchenko)
 - In progress

In progress (2)

- UR-54: Physics models for ions below 1 MeV/u for Boron Proton Capture
- Source: P. Cirrone
- The aim is to compare the hadronic physics models for the p+B11 —> 3 alpha reaction

In order to do that:

- Extend the hadronic physics models below 1 MeV
- Improve the issue of non conservation of the baryonic number in ParticleHP

In progress (3)

- UR-53: Extend energy and material coverage of G4-DNA beyond DNA and liquid water (S. Incerti)
 - Liquid water, DNA, amino-acids, boron, gas
 (micro/nanodosimetry), solid state (e.g. high Z materials for
 nanoparticle aided radiotherapy, microelectronics)
 - Done for gold (Geant4 11.0)
 - Done for protons in water (extension 100 MeV -> 300 MeV) by M. Cortes-Giraldo et al.
 - In progress for electrons: for water (option4: 10 keV -> 10 MeV) by I. Kyriakou et al, for DNA materials (by S. Zein et al.), for N2 (by C. Villagrasa et al.)
 - Extend ionisation cross sections to heavy ions: Al, Ar, Cl, F, Mg, Na, Ne, P, S (beyond ⁷Li, ⁹Be, ¹¹B, ¹²C, ¹⁴N, ¹⁶O, ²⁸Si, ⁵⁶Fe) for space radiation protection, by D. Bolst, D. Sakata, J. Archer, S. Guatelli

Gold

Sakata et al (2019) Electron track structure simulations in a gold nanoparticle using Geant4-DNA, Physica Medica, 63: 98-104

New URs

- Some documented in the talk of G. Petringa "Open and new requirements: medical and bio science 2021" 26th Geant4 Collaboration Meeting 20/09/2021 (But not included in JIRA)
- Some are new

UR: geometries of interest for radiobiology

- UR: Provide (external) files to describe geometries of biomolecules (e.g. plasmids, bacterium & cell genome)
- Source: S. Incerti
- On going through BioRad3
 - release of two alternative chains (first public BETA release of "moleculardna" in 11.1
 BETA, "dnadamage1" expected in 11.1) and more upgrades in 2023
 - See "moleculardna" web site: https://geant4-dna.github.io/molecular-docs/

Radiobiological studies for space radiation protection

- UR: Multiscale combination. Mixing condensed-history and Geant4-DNA, e.g. for radioprotection in space :
 - cosmic spectra space habitats
 - human phantom « microscopic » & « macroscopic » biological end-points
 - Delivery of BioRad3 expected in 2023
- UR: em + hadronic. Provide an example of physics list activating both Geant4-DNA and hadronic physics, including radioactive decay
- This is on-going

UR: chemistry

- Mesoscopic approach under development (high dose rates, longer times) compared to existing Geant4 (step by step) approaches, including extended example
- Activate three Time-Step models (SBS,IRT, IRT-syn) in chem6 example using IU macro.
- "scavenger" example for radiolysis simulation in scavengers released in Geant4 11.0
- On-going activity

Other URs

- UR: Isotope production from protons
 - IAEA has made an extensive work to cover isotope production for medical applications (https://www-nds.iaea.org/medical/)
 - Review and include IAEA medical cross sections into the Geant4 ParticleHP database
- UR biasing : Add AtRest in Geant4 Biasing framework
 - Source: P. Arce
- UR geometry: for DNA geometries, include the option to change the copy number of geometries from a G4int to a long in Replica and parameterized volumes, with a lot of geometries (DNA, 6 billion x 2 bases x 4 section geometries),
 - Source: J. Schuemann, & A. McNamara
 - Run out of copy numbers in G4int
- UR examples: modelling radiation damage in semiconductor devices
 - Source: Geant4 User Forum
 - Develop a Geant4 example, or a macro in an already existing G4 example, to show how to calculate radiation damage (with G4NIELCalculator and G4NuclearStopping)

Positrons

UR: Geant4-DNA physics processes for positrons

- Source: Geant4 user forum
- Model the radiation transport of positrons at low energies, similarly to what done for electrons

UR: Positron annihilation and photon a-collinearity

- Source: Mirjam Schöneck, mirjam.schoeneck@uk-koeln.de, Maxime Toussaint: <u>Maxime.Toussaint@USherbrooke.ca</u>)
- Documented in: https://geant4-forum.web.cern.ch/t/non-collinearity-of-gammas-in-e-e-annihilation/7259/13

Synchrotron radiation production in a wiggler

UR: revision of G4SynchrotronRadiation process

- Source: S. Guatelli
- Comparison of wiggler spectra: Geant4 v.s. SPEC
- SPEC verified against XOP (https://aip.scitation.org/doi/10.1063/ 1.1147376)
- <50 keV: Geant4 overestimates flux relative to SPEC
- G4:SPEC flux ratio 1-20keV = 2.922
- >50keV: Geant4 and SPEC spectra agree

Australian Synchrotron

Python wrapping

- UR: G4 Python wrapping
- Source: David Sarrut
- python wrapping of some Geant4 classes and functions for the new GATE version.
 The current Geant4 version is not adequate for the needs of GATE.
- A first pybind11-based G4 wrapping has been developed tailored for GATE users.
 The code is open source and it is here:
 https://github.com/OpenGATE/opengate/tree/master/core/opengate_core/g4_bindings
- There is strong interest to collaborate to develop further the Geant4 python wrapping for the wider Geant4 community

Validation for radiobiology

On-going verification & validation

- Continue efforts in chemistry under irradiation & radiobiology
- Calculation of G-values, under variety of exp. conditions : T, pH, scavengers, high LET
- Radiobiological damage: beyond strand-breaks towards macroscopic observables (e.g. requiring analytical repair models)
- Addition of related extended and advanced examples for users
- Some of these activities are currently on-going through
 - the ESA BioRad III project (2021-2023): CEA (FR), CHUV (CH), G4AI Ltd. (UK), IN2P3 (FR —coord.), INFN (IT), Ioannina U. (GR), IRSN (FR), Sevilla U. (ES), Swhard (IT)
 - the MAGIC project (2020-2023): CHUV (CH coord.), LP2i (FR)
 - The FLASHMod project (2021-...): LPC (France), LP2i

Validation for bio-medical applications: the G4-Med suite

UR: extend the tests to other medical applications

- 19 tests, on geant-val
- Next in the pineline:
- Include Geant4-DNA physics lists where applicable (e.g. Microdosimetry and DPK)
- X-ray small field dosimetry S. Guatelli, I. Filipev, G. Biasi, A. Rozenfeld, CMRP, UOW
- Include EPICS17 data libraries in the photon attenuation tests

- Later:

- Radioactive decay L. Desorgher et al
- Nuclear medicine tests A. Malaroda, S. Guatelli et al
- Photon energy fluence profile and thick target photon backscatter benchmark By J. Carrasco Hernandez, B. Faddegon and J. Ramos Mendez, UCSF
- Calculation of the wall correction factors, kwall, for two graphite ionization chambers P. Arce
- Include benchmark against ICRU Report 90: Stopping Powers of electrons (and positrons), protons, α particles and carbon ions for three key materials: graphite, air, and liquid water
- Include total inelastic cross section tests of production of C-10 and C-11 important for carbon ion in-vivo PET and Prompt Gamma imaging, E. Simpson, ANU
- Validate Medical Linac advanced examples against EURADOS Report 2020-05 C. Caccia

UR: It would be important to find a way to run all the tests before beta and public releases.

UR: In a longer term vision, it would help to have documentation on how to run the tests via geant-val and eventually, on how to set them up

Other

- UR: documentation. Have a webpage linked to www.geant4.org, with information about Geant4 for medical applications
 - Examples
 - G4 medical physics activity
 - Useful information, e.g. how to activate biasing for bremsstrahlung, etc.
 - Promote events (workshops, conferences, schools)
 - Source: S. Guatelli
 - Status: to start

More information

Implementation of EPICS2017 for Livermore photon models

Z. Li, C. Michelet, S. Incerti, I. Ivanchenko, M. Novak, S. Guatelli

- Database EPICS2017 (Electron Photon Interaction Cross Section library) contains physical data (cross section...) for electron and photon transport calculation, has been implemented for Livermore photon models, available from Geant4 11.0.
- EPICS2017 database is triggered by /process/em/LivermoreData epics_2017 if G4EmLivermorePhysics is used.
- Models involved:
 - G4LivermoreGammaConversionModel
 - G4LivermoreGammaConversion5DModel
 - G4LivermoreComptonModel
 - G4LivermorePhotoElectricModel
 - G4LivermoreRayleighModel
- Tabulated cross-sections have been updated, new parameterizations with better precision regarding scattering functions of Compton effect, cross-sections of photoelectric and form factors of Rayleigh scattering have been applied.
- **Publication**: Z. Li, C. Michelet, S. Incerti, I. Ivanchenko, M. Novak, S. Guatelli, H. Seznec. Implementation of the EPICS2017 database for photons in Geant4, Physica Medica 95 (2022) 94-115.
- Technical notes are available on the Geant4@IN2P3 website: http://geant4.in2p3.fr/styled-4/styled-8/

Work on EPICS2017 electron data

Z. Li, C. Michelet, S. Incerti, I. Ivanchenko, M. Novak

Method:

The following comparisons were performed:

- > Subshell ionization cross-section for Z: 1-100 between EPICS2017 and previous version EPICS2014 (=EEDL91)
- > Ionization cross-section and stopping power for Z: 1-97 calculated by Livermore, Penelope and MollerBhabha models
- > Ionization stopping power between Livermore ionization models and ESTAR data.
 - for elements: H, C, Si, Fe, Cs, Pb, U
 - for materials: air, graphite and water

Conclusion:

There is no need to update Livermore electron ionization model for EPICS2017 electron data.

A technical note summarizing the work is in progress and will be available soon.