

PRINCETON

UNIVERSITY

Recent Developments in Hadronics

V. Ivantchenko
CERN & Princeton University

27th Geant4 Collaboration Meeting, 26–30 Sept 2022

Outline

- Updates of base classes
 - G4ParticleChange
 - G4VCrossSectionDataSet
 - G4HadronicProcess
 - G4HadronicParameters
- Neutron general process
- Modifications in physics_list
- Updates in de-excitation module
 - Problems
 - Gamma transitions
 - Evaporation
 - Multi-fragmentation
- Summary and plans for 11.1

Particle Change classes clean-up

- Classes used in hadronics processes
 - G4VParticleChange base class
 - G4ParticleChange hadronic processes
 - G4ParticleChangeForDecay radioactive decay
- Clean-up includes following modifications:
 - Protection against negative energy of primary or secondary
 - No limit on number of secondaries
 - SetNumberOfSecondaries(G4int) call is useful but not mandatory anymore
 - Internally std::vector is used instead of std::array
 - In G4VERBOSE mode
 - Check on secondary kinetic energy, momentum direction, time
 - Detailed printout of G4Track parameters in case of a problem
 - Different G4Exception level
 - Instead of EventShouldBeAborted now JustWarning is used

G4VCrossSectionDataSet

- Added extra interfaces to the base class for hadronic cross sections
 - virtual G4double ComputeCrossSectionPerElement(G4double kinEnergy, G4double loge, const G4ParticleDefinition* p,
 const G4Element* elm, const G4Material* mat = nullptr);
 - virtual G4double ComputeIsoCrossSection(G4double kinEnergy, G4double loge, const G4ParticleDefinition* p, G4int Z, G4int A, const G4Isotope* iso = nullptr, const G4Element* elm = nullptr const G4Material* mat = nullptr);
 - These methods do not use G4DynamicParticle and are useful for
 - Initialisation
 - Integral method
 - Neutron general process
- New methods without G4DynamicParticle argument are used in XS cross sections classes
 - G4NeutronInelasticXS
 - G4NeutronElasticXS
 - G4NeutronCaptureXS
 - G4ParticleInelasticXS
- Propagation to other cross section classes may be done for the next release
 - Tiny CPU improvement is expected
 - Improved capabilities for unit tests

Integral method for hadronics – G4HadronicProcess

- During a step of a charge particle cross section is changed due to the energy loss
 - In EM physics the "integral" method was developed since long time and does improve EM shower shape simulation
 - For Geant4 11.0 the method for EM was significantly updated
 - It is considered up to 3 peaks in a cross section
- The integral method is now implemented for hadronics
 - For proton and pions 3 peaks cross section shape is considered
 - For K+ one peak is considered
 - For the rest of positive hadrons and ions increased X-section with energy is assumed
 - For the rest of negatively charged hadrons decreased X-section with energy is assumed
 - Flags to enable/disable the integral method are available in G4HadronicParameter class
 - Separately for inelastic and elastic processes
- Tests on performance do not show significant effects on results or CPU
 - No evidence of improved shower shape for HEP yet
 - The method is the current default
 - Should affect low-energy charged hadron/ion tracking to be confirmed

G4HadronicParameters – new parameters

```
G4bool EnableHyperNuclei() const;
void SetEnableHyperNuclei( G4bool val );
// Light hyper-nuclei may be enabled/disabled
// This flag is used both by EM and hadronic physics constructors
G4bool ApplyFactorXS() const;
void SetApplyFactorXS( G4bool val );
// Flag enabling cross section factor definition
G4int GetVerboseLevel() const;
void SetVerboseLevel( const G4int val );
// Getter/Setter of the general verbosity level for hadronics.
G4bool EnableCRCoalescence() const;
void SetEnableCRCoalescence( G4bool val );
// Boolean switch that allows to apply the Cosmic Ray (CR) coalescence algorithm
// to the secondaries produced by a string model. By default, it is disabled.
```

```
inline G4bool EnableIntegralInelasticXS() const;
inline G4bool EnableIntegralElasticXS() const;
void SetEnableIntegralInelasticXS( G4bool val );
void SetEnableIntegralElasticXS( G4bool val );
// Enable/disable integral method for main hadrons
inline G4bool EnableDiffDissociationForBGreater10() const;
void SetEnableDiffDissociationForBGreater10(G4bool val);
/// For nucleon-hadron interactions, it's not decided what to do with diffraction
/// dissociation. For the moment, they are turned off. This option allows it to
/// be turned back on. Applies to Baryon Number > 10 or # target nucleons > 10.
inline G4bool EnableNeutronGeneralProcess() const;
void SetEnableNeutronGeneralProcess( G4bool val );
// Neutron general process may be enabled/disabled
```

Neutron general process

- G4GammaGeneralProcess is adopted both by ATLAS and CMS
 - In ATLAS it provides ~4% speedup for Run3 MC production
 - In CMS it provides ~2% speedup for Run3 MC production
- G4NeutronGeneralProcess (NGP) new combined process
 - Should optimize GetPhysicsInteractionLength(..) method
 - It includes processes
 - Neutron elastic
 - Neutron inelastic
 - Neutron capture
 - Neutron killer
 - In these processes the cross sections are used
 - G4NeutronElasticXS
 - G4NeutronInelasticXS
 - G4NeutronCaptureXS
- Expected few % speedup for HEP experiments

Some implementation details

- NGP is released inside hadronic/processes sub-directory
 - It is using only hadronic sub-libraries nothing from EM
- In NGP 3 energy intervals will be considered
 - T < 1 keV simplified cross sections
 - This threshold should be optimized
 - Low energy neutrons will be killed mainly by the time cut
 - 1 keV < T < 20 MeV
 - Detailed cross sections with many bins per decade
 - Optimized selection of process and target isotope
 - T > 20 MeV standard HEP tables
 - Mainly element vise x-sections
 - Time cut by default 10 microsecond, may be changed via Set method
- Problems to include into reference Physics Lists
 - Solution for FTFP_BERT was found out and it is working fine
 - Nightly tests fail for several applications, which uses general biasing
 - No investigation of a problem was done
 - Temporary solution:
 - custom physics configuration may be implemented by ATLAS, CMS, and any other user application, where general biasing is not used

Modifications in hadronic physics lists

- To ensure early initialization of hadronic parameters
 - G4PhysListUtil::InitialiseParameters()
 - Called in several places of physics construction
 - Should be called in any custom physics
- To access a hadronic process on top of any reference Physics List, use methods of G4PhysListUtil
 - static G4VProcess* FindProcess(const G4ParticleDefinition*, G4int subtype);
 - static G4HadronicProcess* FindInelasticProcess(const G4ParticleDefinition*);
 - static G4HadronicProcess* FindElasticProcess(const G4ParticleDefinition*);
 - static G4HadronicProcess* FindCaptureProcess(const G4ParticleDefinition*);
 - static G4HadronicProcess* FindFissionProcess(const G4ParticleDefinition*);
 - static G4NeutronGeneralProcess* FindNeutronGeneralProcess();
- To change hadronic cross section of top of any reference Physics List, use methods of HadProcesses utility
 - static G4bool AddInelasticCrossSection(const G4ParticleDefinition*, G4VCrossSectionDataSet*);
 - static G4bool AddInelasticCrossSection(const G4String&, G4VCrossSectionDataSet*);
 - static G4bool AddElasticCrossSection(const G4ParticleDefinition*, G4VCrossSectionDataSet*);
 - static G4bool AddElasticCrossSection(const G4String&, G4VCrossSectionDataSet*);
 - static G4bool AddCaptureCrossSection(G4VCrossSectionDataSet*);
 - static G4bool AddFissionCrossSection(G4VCrossSectionDataSet*);

Problems of de-excitation module

- De-excitation module is responsible for simulation of decays of excited fragments
 - Multi-fragmentation (disabled by default)
 - Emission of light fragments (Evaporation, GEM, FermiBreakUp)
 - Gamma de-excitation including internal conversion (IC)
- De-excitation is performed step by step
 - Decay channels are selected randomly depending on probability
 - It is completed when all fragments are stable
 - Lifetime of a stable fragment should be above 1 ns
- There were several problem reported by different users
 - The most detailed analysis was done by A. Svetlichnyi and colleagues: https://indico.cern.ch/event/1106118/contributions/4693132/attachments/2376453/4059593/Kinetic G4 Tech Forum Svetlichnyi.pdf
 - After 11.0ref02, QGSP_BIC in simplified calorimeter test provides energy deposition is increased by 3-4%
 - Problems were studied and number of revisions were added to the de-excitation module

Nuclear level data

- Information on a level includes
 - Excitation energy
 - Lifetime
 - Spin-parity
 - List of transitions with probabilities of internal conversion (IC)
- The list of nuclear levels is incomplete
 - For unstable fragments smaller number of measurements are available
 - Even for main isotopes there are levels with unknown properties
 - Fermi level of an unstable fragment is known approximately
- In the recent dataset we have
 - Total size in the memory 56M, without IC data 8M
 - 171303 nuclear levels
 - 15653 levels are "floating"
 - 1263 floating levels have no known transitions
 - There are levels with identical energy
 - 984 floating levels have excitation energy equal to the previous level
 - 438 floating levels have energy equal to the next level
 - At least 65 floating levels with equal energy have different lifetime
 - There are differences in level description in radioactive decay data and photon evaporation data

Photon evaporation code updates

- For Geant4 11.0ref03 number of fixes were introduced
 - If initial excitation level is a floating level a search for the close normal level is performed
 - If G4Fragment has excitation energy out of tolerance=10 eV to a known nuclear level or this level has no known transitions this excitation state assumed to be continuum and not discrete
 - Continues and discrete transitions are handled differently
 - Final state in gamma de-excitation is always a known excitation level
 - The same approach for neutron and light ion emission
 - A new flag "IsLongLived()" is added to G4Fragment with the lifetime >1 ns
 - Such state is "stable" and will not be further decayed
 - This allows transportation and radioactive decay of such isotopes
- The situation was improved with 11.0ref04
 - No fake states are produced
 - Bugs in radioactive decay channels are fixed
- Bug reports on incorrect probabilities of the internal conversion and on correlated gammas are not yet addressed

Evaporation code was improved

- Algorithm of numerical integration of the differential probability of light fragment emission was significantly updated
 - Step of integration is reduced and optimized
 - More computations of differential x-sections
 - During integration over emitted fragment kinetic energy the cross section is analyzed, maximum cross XS and parameters of exponential tail are identified
 - Sampling of final state is updated:
 - limit on number of attempts is increased from 100 to 1000
 - Sampling of final kinetic energy is performed more effectively using two areas
 - Const and exponential regression
- Inverse cross section expression used in computation of emission probability is revised
 - For charged fragment emission an extra factor is used for kinetic energy
 - (0.5 1)*CB (Coulomb Barrier)
 - similar function was introduced by V. Grichine for ion-ion x-sections
- Formulas used in evaporation code were verified
 - It was confirmed that they correspond to prescriptions of publications used in these models
- Few problems in multi-fragmentation code were fixed
 - Not yet recommended for users

Test results for 11.0.7

- Full set of results for test30
 - http://vnivanch.web.cern.ch/vnivanch/hadronic/test30/geant4-11-00-ref-07/
- Isotope production results for IAEA benchmark
 - http://vnivanch.web.cern.ch/vnivanch/hadronic/iaea/geant4-11-00-ref-07/

Summary and plans for 11.1

- New features are available for 11.1
 - Neutron general process
 - Integral method for hadrons
- De-excitation module improvements
 - Resolved problems introduced in previous releases
 - Levels without data on transitions
 - Floating levels
 - Sampling of evaporation of neutrons and light ions
 - Energy response for hadronic calorimeters are back to normal
- Short term plan for 11.1
 - Establish 1 ns time limit for all components of hadronic physics
 - Do not enable multi-fragmentation by default
 - Check Fermi BreakUp model
 - To add optional X-sections and fragmentation of light hyperneuclei