

FLUKA.CERN HADRONIC EVENT GENERATOR INTERFACE

CONTEXT

GOAL

Make FLUKA physics models available to the G4 community.

General context: increasing FLUKA openness and synergies with G4.

PROPOSAL

Interface giving access to FLUKA PEANUT (hadronic interactions modeling) from G4.

➤ Give direct access to FLUKA Physics from the G4-based user applications and experiments frameworks.

Hadronic interactions modeling is one of the main targets of FLUKA Physics integration.

➤ To be followed by integration of additional FLUKA models (e.g. ion-nucleus).

First step in FLUKA code modernization and opening to the community.

➤ A second step will be to **modularize** the FLUKA code itself, to make it more maintainable, and possibly increase the granularity of the G4 integration.

DEPENDENCIES

- ➤ Interface can be called in any G4 application (e.g. independent from MOIRA/FLUKA++).
- > Registration to FLUKA and agreement to FLUKA exisiting license is obviously needed.

PROJECT STRUCTURE

2 distinct projects:

G4 ↔ FLUKA interface

Standalone repository.

- ➤ Transparently follow future FLUKA updates.
- ➤ Registration to FLUKA and agreement to its license needed here.

 Need to install FLUKA locally, to be able to link and run the interface successfully.

G4 side

Created dedicated Model (FlukaNuclearInelasticModel), XSDataSet (FlukaInelasticScatteringXS) [, PhysicsConstructor (FlukaHadronInelasticPhysics), PhysicsList].

The interface can be called:

- ➤ At the interaction level Incorporated XS and final-state standalone applications as G4 examples.
- ➤ As a comprehensive Physics list /physics_lists/select in any G4 application (including MOIRA).

Integration to G4

Fully open to discussion and G4 team preferences.

- ➤ Integrate FLUKA Model and XSDataSet in source/processes/hadronic/cross_sections and models.
- ➤ Integrate to G4 examples the applications calling the FLUKA interface for interaction-level simulations.
- ➤ Would it also be useful to integrate the FlukaHadronInelasticPhysics PhysicsConstructor / a template PhysicsList?

G4 ↔ FLUKA INTERFACE

C++ interface, compatible with **FLUKA's latest release**.

cpp_to_fortran_utils cpp_utils fluka4_wrapper hadronic_interactions

Presently includes:

- Standalone code, isolating FLUKA hadron-nucleus interactions modeling.
 Isolates the necessary FLUKA initializations and calls.
 Returns inelastic scattering XS, and hadron-nucleus interactions final states, as computed by FLUKA.
- ➤ A FLUKA project wrapper.

 Contains all needed FLUKA headers and functions in C++

 (and the associated fortran procedures signatures).
- ➤ Generic **G4** ↔ **FLUKA interfacing helpers** (particles identification, etc).
- Generic FORTRAN to C++ tools.

Easily extendable (provided extra FLUKA wrappers are added as needed).

DEVELOPMENTS STATUS

Standalone hadronic event generators AT THE INTERACTION LEVEL

Input: projectile type, kinetic energy, target nucleus.

Output: hadron-nucleus interactions cross-sections + final states.

Compiles & provides consistent results versus raw FLUKA calls.

- ➤ Compared <u>reaction cross-sections</u> and <u>final states</u> for a wide range of inputs.
- ➤ Also made random histories consistent for comparison purposes.
- ➤ Results are binwise identical with FLUKA Fortran version.

FLUKA hadron-inelastic interactions AS A COMPREHENSIVE PHYSICSLIST

Tested both as a standalone G4 application and in MOIRA.

- ➤ All default G4 energy and momentum conservation checks now pass successfully.
- > Preliminary results are promising (see later slides).
- > Still more debugging needed for a wider range of inputs.

General note:

Single-threaded runs for now.

Could investigate what can be done to run the needed FLUKA sections in multi-threaded mode. For example: make the COMMON thread-local? OpenMP directives in FLUKA?

INELASTIC HADRON-NUCLEON REACTIONS

Intermediate Energies

All reactions proceed through an intermediate state containing at least one resonance (dominance of the $\Delta(1232)$ resonance and of the N* resonances)

$$N_1 + N_2 \rightarrow N_1' + N_2' + \pi$$
 threshold around 290 MeV, important above 700 MeV

$$\pi + N \rightarrow \pi' + \pi'' + N'$$
 opens at 170 MeV

High Energies: Dual Parton Model/Quark Gluon String Model etc.

Interacting strings (quarks held together by the gluon-gluon interaction into the form of a string). Each of the two hadrons splits into 2 colored partons → combination into 2 colorless chains → 2 back-to-back jets.

Each jet is then hadronized into physical hadrons.

Francesco
Ceruttí,
FLUKA
Introduction
course,
Hadronic
interactions

FLUKA INELASTIC HADRON-NUCLEUS INTERACTION MODELING: PEANUT

7 TeV proton - C nucleus collisions secondaries: Charged pions spectrum 10 FTFP BERT QGSP BERT FLUKA 0.1 dN / d(logE) [1/pr] 0.01 0.001 0.0001 1e-05 10GeV 100GeV 1TeV 100keV 1MeV 10MeV 100MeV 1GeV 10TeV 100TeV 10keV Kinetic Energy [GeV]

7 Tev proton - C nucleus collisions. 1 000 000 collisions.

7 Tev proton - C nucleus collisions. 1 000 000 collisions.

G4 ↔ FLUKA COMPARISONS AT THE INTERACTION LEVEL: CROSS-SECTIONS

XS STANDALONE APPLICATION

- ➤ Created standalone G4 application to printout XS for given particle and target material. Supports any G4 Physics List + G4 interface to FLUKA hadron inelastic interactions.
- ➤ Based on one of the G4 examples.
- ➤ Complementary to the standalone G4 application to printout final state.
- ➤ Integrated **scoring from MOIRA** for easy integration with **Flair**.
- ➤ Possible, but not compulsory relevant, to integrate in a complete G4 application:
- **not event-based**: work is done at the end of the run.
- > independent from the input geometry: only target material matters.

PROTON ON PB: INELASTIC XS

PROTON ON PB: ELASTIC AND TOTAL XS

Elastic XS with the FLUKA interface follows G4 elastic XS!!

NEUTRON ON PB: INELASTIC XS

NEUTRON ON PB: ELASTIC AND TOTAL XS

Elastic XS with the FLUKA interface follows G4 elastic XS!! Also true for capture XS and fission XS (for any material).

INTERFACE TO FLUKA HADRON INELASTIC INTERACTIONS: INTEGRATION IN ANY G4 APPLICATION EXAMPLE OF MOIRA INTEGRATION

G4 XS AND INTERACTION MODELS: OWNERSHIP DESIGN

G4 XS AND INTERACTION MODELS: RUNTIME

INITIALIZATION: PHYSICS PROCESS REGISTRATION

In each Physics constructor:

- **XS and Interaction models** are constructed.
- ➤ ConstructParticle() defines the relevant particles.
- ConstructProcess() associates: particle <-> processes manager <-> processes <-> XS and interaction models.

The G4RunManager calls the physics list's ConstructParticle() and ConstructProcess().

FOR EACH G4 STEP

Competitive process to find the shortest step length provided by all continuous and discrete processes: G4SteppingManager::DefinePhysicalStepLength() calls ComputeCrossSection(dynamicParticle, material).

Run the selected process: G4SteppingManager::InvokePostStepDoItProcs().

Checks that there is 1 or 2 models defined for this projectile, at this energy, and for this material! If 2 models, **make a linear interpolation**.

Update the final state, as defined by the selected process's model(s). result = theInteraction->ApplyYourself(thePro, targetNucleus)

INTEGRATION IN ANY G4 APPLICATION: EXAMPLE OF MOIRA INTEGRATION

- Created complete G4 physics list, incorporating the inelastic hadronic interaction from FLUKA. Calls the interface to FLUKA when relevant.
- Initially based on FTFP BERT HP LIV, with hadronic inelastic processes replaced.
- Can be called from any G4 application, including MOIRA.
- Running it with MOIRA allowed to further **debug the FLUKA interface in a realistic scenario**.

FLUKA INELASTIC HADRONIC INTERACTIONS: INTEGRATION IN FULL PHYSICSLIST

PHYSICS LIST

PHISICS LIST

Class FLUKAPhysicsList : public G4VModularPhysicsList

```
RegisterPhysics( new G4EmLivermorePhysics( ver ) );
                                                             // G4 EM physics
RegisterPhysics( new G4EmExtraPhysics( ver ) );
                                                             // G4 synchroton radiation & GN physics
RegisterPhysics( new G4HadronElasticPhysicsHP( ver ) ):
                                                             // G4 hadron elastic physics HP
RegisterPhysics( new FLUKAHadronInelasticPhysics( ver ) );
                                                             // FLUKA hadron inelastic physics
RegisterPhysics( new G4IonPhysics( ver ) );
                                                             // G4 ions physics
RegisterPhysics( new G4StoppingPhysics( ver ) );
                                                             // G4 stopping physics
RegisterPhysics( new G4DecayPhysics( ver ) );
                                                             // G4 decay physics
RegisterPhysics( new G4RadioactiaveDecayPhysics( ver ) );
                                                             // G4 radioactiave decay physics
```

PHYSICS CONSTRUCTOR

Class FLUKAHadronInelasticPhysics : public G4VPhysicsConstructor

Construct and register at least one process, for each supported particle.

FLUKA CROSS SECTION DATA SET

Class FLUKAInelasticScatteringXS: public G4VCrossSectionDataSet.

Calls to FLUKA inelastic scattering cross-sections computation placed here!

More precisely, it is injected in FLUKAInelasticScatteringXS::ComputeCrossSection.

FLUKA HADRONIC MODEL

Class FLUKANuclearInelasticModel: public G4HadronicInteraction

Calls to the FLUKA nuclear inelastic model placed here, to inject the final state.

More precisely, the final state is set in FLUKANuclearInelasticModel::ApplyYourself(projectile, targetNucleus).

INTEGRATION IN ANY G4 APPLICATION

Example of neutron processes:

G4 FTFP BERT HP LIV:

Hadronic Processes for neutron

```
Process: hadElastic
                        hElasticCHIPS: 19.5 MeV ---> 100 TeV
     Model:
     Model:
                     NeutronHPElastic: 0 eV ---> 20 MeV
  Cr sctns:
                   NeutronHPElasticXS: 0 eV ---> 20 MeV
                   G4NeutronElasticXS: 0 eV ---> 100 TeV
   Cr sctns:
Process: neutronInelastic
     Model:
                                 FTFP: 3 GeV ---> 100 TeV
     Model:
                       BertiniCascade: 19.9 MeV ---> 6 GeV
              NeutronHPInelastic: 0 eV ---> 20 MeV
     Model:
  Cr sctns:
                 NeutronHPInelasticXS: 0 eV ---> 20 MeV
                 G4NeutronInelasticXS: 0 eV ---> 100 TeV
   Cr sctns:
Process: nCapture
     Model:
                     NeutronHPCapture: 0 eV ---> 20 MeV
     Model:
                          nRadCapture: 19.9 MeV ---> 100 TeV
  Cr sctns:
                   NeutronHPCaptureXS: 0 eV ---> 20 MeV
                   G4NeutronCaptureXS: 0 eV ---> 100 TeV
  Cr sctns:
Process: nFission
     Model:
                     NeutronHPFission: 0 eV ---> 20 MeV
     Model:
                           G4LFission: 19.9 MeV ---> 100 TeV
  Cr sctns:
                   NeutronHPFissionXS: 0 eV ---> 20 MeV
  Cr sctns:
                               ZeroXS: 0 eV ---> 100 TeV
```

G4 Physic list with FLUKA interface:

```
Hadronic Processes for neutron
Process: hadElastic
     Model:
                        hElasticCHIPS: 19.5 MeV ---> 100 TeV
     Model:
                     NeutronHPElastic: 0 eV ---> 20 MeV
  Cr sctns:
                   NeutronHPElasticXS: 0 eV ---> 20 MeV
   Cr sctns:
                   G4NeutronElasticXS: 0 eV ---> 100 TeV
Process: neutronInelastic
     Model: FLUKANuclearInelasticModel: 20 MeV ---> 100 TeV
     Model:
               NeutronHPInelastic: 0 eV ---> 20 MeV
  Cr sctns:
                 NeutronHPInelasticXS: 0 eV ---> 20 MeV
  Cr sctns: FLUKAInelasticScatteringXS: 0 eV ---> 100 TeV
Process: nCapture
     Model:
                     NeutronHPCapture: 0 eV ---> 20 MeV
     Model:
                          nRadCapture: 19.9 MeV ---> 100 TeV
                   NeutronHPCaptureXS: 0 eV ---> 20 MeV
  Cr sctns:
                   G4NeutronCaptureXS: 0 eV ---> 100 TeV
  Cr sctns:
Process: nFission
     Model:
                     NeutronHPFission: 0 eV ---> 20 MeV
     Model:
                           G4LFission: 19.9 MeV ---> 100 TeV
                   NeutronHPFissionXS: 0 eV ---> 20 MeV
  Cr sctns:
                               ZeroXS: 0 eV ---> 100 TeV
  Cr sctns:
```


INTEGRATION IN ANY G4 APPLICATION

Example of proton processes:

G4 FTFP BERT HP LIV:

Hadronic Processes for proton

Process: hadElastic

Model: hElasticCHIPS: 0 eV ---> 100 TeV Cr_sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV

Process: protonInelastic

Model: FTFP: 3 GeV ---> 100 TeV Model: BertiniCascade: 0 eV ---> 6 GeV Cr_sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV

G4 Physic list with FLUKA interface:

Hadronic Processes for proton

Process: hadElastic

Model: hElasticCHIPS: 0 eV ---> 100 TeV

Cr_sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV

Process: protonHadronInelastic

Model: FLUKANuclearInelasticModel: 0 eV ---> 100 TeV Cr_sctns: FLUKAInelasticScatteringXS: 0 eV ---> 100 TeV

INTEGRATION IN ANY G4 APPLICATION

.....

Example of pi+/pi- processes:

G4 FTFP BERT HP LIV:

```
Hadronic Processes for pi+
Process: hadElastic
     Model:
                     hElasticGlauber: 0 eV ---> 100 TeV
  Cr sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV
Process: pi+Inelastic
     Model:
                                FTFP: 3 GeV ---> 100 TeV
     Model: BertiniCascade: 0 eV ---> 6 GeV
  Cr sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV
                       Hadronic Processes for pi-
Process: hadElastic
     Model:
                     hElasticGlauber: 0 eV ---> 100 TeV
   Cr sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV
Process: pi-Inelastic
     Model:
                                FTFP: 3 GeV ---> 100 TeV
     Model: BertiniCascade: 0 eV ---> 6 GeV
  Cr sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV
Process: hBertiniCaptureAtRest
```

G4 Physic list with FLUKA interface:

```
Hadronic Processes for pi+
Process: hadElastic
     Model:
                      hElasticGlauber: 0 eV ---> 100 TeV
   Cr sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV
Process: pi+HadronInelastic
     Model: FLUKANuclearInelasticModel: 0 eV ---> 100 TeV
  Cr_sctns: FLUKAInelasticScatteringXS: 0 eV ---> 100 TeV
                        Hadronic Processes for pi-
Process: hadElastic
     Model:
                      hElasticGlauber: 0 eV ---> 100 TeV
   Cr_sctns: BarashenkovGlauberGribov: 0 eV ---> 100 TeV
Process: pi-HadronInelastic
     Model: FLUKANuclearInelasticModel: 0 eV ---> 100 TeV
  Cr_sctns: FLUKAInelasticScatteringXS: 0 eV ---> 100 TeV
Process: hBertiniCaptureAtRest
```


MOIRA INTEGRATION: 20 GEV PROTON GUN ON PB TARGET

ANNEX

7 TEV PROTON ON C INTERACTIONS

7 TEV PROTON ON C: SECONDARIES SPECTRA

7 TEV PROTON ON C: SECONDARIES SPECTRA

7 TEV PROTON ON C: SECONDARIES SPECTRA

FLUKA VS G4 DISCREPANCIES TO INVESTIGATE

10 GEV PROTON ON AL: SECONDARIES SPECTRA (TAN(THETA) <= 0.01)

AT THE INTERACTION LEVEL!

FLUKA VERSUS G4 PROTON FLUENCE DISCREPANCY IN PB BELOW 10 MEV

