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Disclaimer

▶ Not a classic textbook lecture on GPUs
▶ Will skip over most aspects of programming

▶ Focus on strengths and peculiarities of GPUs
▶ ... with applicability to Monte Carlo simulations in mind

▶ ... condensed into 30 minutes
▶ (will focus on GPUs by NVIDIA, but similar concepts apply to AMD)
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Strengths of GPUs
What exactly IS a GPU?

▶ GPU = Graphics Processing Unit
▶ CPU = Central Processing Unit

▶ Create images for output to display device
▶ Today’s hardware: programmable shaders
▶ Highly-parallel architecture, efficient for its task

▶ GPGPU = General-purpose GPU
▶ or “General-purpose computing on GPUs” (according to Wikipedia)
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(humorous video)

https://www.youtube.com/watch?v=-P28LKWTzrI
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Strengths of GPUs
High-level comparison with (modern) CPUs

▶ Current CPUs have few cores
▶ At least compared to current GPUs

▶ Instead optimized for sequential programs
(or “mildly” threaded)
▶ Hierarchy of cashes
▶ Complex control logic, branch prediction
▶ Out-of-order execution
▶ ...
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Strengths of GPUs
High-level comparison with (modern) CPUs

▶ GPUs have many “dumb” cores

▶ No focus on a single thread
▶ Optimize throughput of all cores

▶ Hide latencies via scheduling
▶ Oversubscribe hardware, more threads than cores
▶ Efficiently switch between threads

(for example if waiting for memory)

Control

L2 cache
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Strengths of GPUs
Massive data parallelism

▶ GPUs have to be efficient at their task
▶ For graphics, throughput is measured in “frames per second” (FPS)...

▶ Need to process millions of triangles for millions of pixels
▶ Computations are independent, can be parallelized
▶ Simply not important how long a single triangle / pixel would take...
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Strengths of GPUs
(Ab)using GPUs for science

▶ In the early 2000s, scientists noticed the available processing power.
▶ They began writing graphics pipelines to “offload” parts of their applications.
▶ Effectively abusing the programmable vertex and pixel shaders

▶ In 2007, NVIDIA introduced the CUDA platform
▶ Explicit APIs for compute kernels with less overhead
▶ Proprietary interface, defined by NVIDIA

▶ Since then: number of standards for using GPUs (OpenCL, OpenACC, OpenMP)
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Strengths of GPUs
Favorable applications

▶ GPUs are good at highly data-parallel tasks

▶ Prime use case for science: linear algebra
▶ Vectors similar to lists of vertices, matrices represented as arrays...
▶ Anyway: transformations are core tasks of GPUs for graphics

▶ Traditionally important for simulations in HPC

▶ One example: general matrix-matrix multiplication, gemm
▶ Also at the core of neural networks!
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Peculiarities of GPUs



Peculiarities of GPUs
Thread divergence

▶ GPUs are less good at non-uniform workloads

▶ Hardware is optimized to work in “lockstep”
▶ Initially program counter was per warp (= 32 threads)!

▶ For branching code, inactive threads masked out
▶ Extreme case: only one thread executing at a time

▶ Somewhat relaxed / improved in recent generations
▶ Still, strictly uniform code is fastest
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Peculiarities of GPUs
Memory coalescencing

▶ Related optimization: memory coalescing

▶ On CPUs, improved performance by optimizing for caches
▶ Put related values close together, if accessed together
▶ Keyword: Array of Structures, AoS

▶ On GPUs, best to have threads load adjacent values
▶ For example, make 32 threads load entries 0 to 31 of an array
▶ Hardware will optimize by “coalescing” loads
▶ Keyword: Structure of Arrays, SoA
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Peculiarities of GPUs
Separate memory spaces and data transfer

▶ GPU memory is (usually) separate from main memory

▶ It is faster than main memory, but limited in capacity
▶ Does your problem size fit into GPU memory?

▶ Data must be transferred via interconnect (PCIe)
▶ Much slower than memory bandwidths
▶ Affects both directions: input data and simulation result

Host Memory

CPU

GPU

Device Memory

PCIe
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Peculiarities of GPUs
A quick note on floating point precision

▶ (Consumer) GPUs are sold and optimized for graphics output
▶ Need to be fast in single precision floating point arithmetic

▶ Not so much for double precision
→ Performance ratio 1:32 for double precision computations!

▶ Data center GPUs for HPC are optimized for simulation
▶ Ratio 1:2 for double precision
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Applicability for Monte Carlo simulations



Applicability for Monte Carlo simulations
Natural parallelism and computations

▶ Particle transport is embarrassingly parallel
▶ Tracks are simulated independently → good for GPU simulation
▶ However, leads to very different tracking than Geant4 (stack-based)
▶ Secondary and stopped tracks need to be handled (changing population)

▶ Many computations and mathematical functions
▶ Logarithms, square roots, exponential, sin & cos
▶ GPUs can provide higher throughput for these
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Applicability for Monte Carlo simulations
Non-uniformity

▶ Monte Carlo simulations governed by random numbers
▶ Many interactions require rejection-based sampling
→ Thread divergence, bad for performance on GPUs

▶ Geant4 simulates many different particle types
▶ Many different physics processes and models
→ Thread divergence, bad for performance on GPUs

▶ Divergence also comes from geometry and field propagation
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Applicability for Monte Carlo simulations
Data lookup and requirements

▶ Cross sections require data lookup by kinetic energy
▶ Depends on simulation history, which is random
→ No memory coalescing, bad for performance on GPUs

▶ Geant4 almost exclusively uses doubles
▶ Required in some places – a unit vector must be unit!
▶ Care must be taken when reducing precision...
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Summary

▶ GPUs provide great processing power, but are very different from CPUs
▶ Designed for massive data parallelism

▶ As with any application, performance depends on many factors
▶ Some positive characteristics of MC, but many challenges
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