Development of a Physics List for Radiation Protection Studies in Space

Jay Archer¹, H. N. Tran², J. Brown³, S. Guatelli¹

- 1. Centre For Medical and Radiation Physics, University of Wollongong (UOW), Wollongong, NSW, Australia
- 2. Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
- 3. ANSTO, Luca Heights, NSW, Australia

within the Geant4-DNA Collaboration

Brief Background

• Beyond the surface of Earth, the lack of atmosphere and magnetosphere results in a harsher radiation environment

- Understanding the radiation environment in vital organs and potential DNA damage paramount to astronaut safety
- Current focus on lunar mission

Lunar Radiation Environment

• The radiation environment on the moon consists of primary GCR particles and secondary radiation generated within the lunar volume

GCR spectrum during solar minimum as modelled using SPENVIS¹

- Primary GCR particles mainly high energy protons
- Other ions must also be considered due to larger dose equivalent (He, C, Fe at least)

Lunar Radiation Environment

• The secondary radiation leaving the lunar surface is simulated using a multi-layer lunar volume

Secondary particles generated from the lunar surface from GCR protons ¹

- Secondary radiation consists of many low energy neutrons
- Heavier fragments also occur with lower frequency

Geant4-DNA Space Physics List

- Current Geant4-DNA models for particles of interest include:
 - e⁻: up to 1 MeV
 - Protons: up to 100 MeV
 - lons: up to 100 MeV
 - Simulated Ions: ⁷Li, ⁹Be, ¹¹B, ¹²C, ¹⁴N, ¹⁶O, ²⁸Si, ⁵⁶Fe
- Thus, much of the GCR and secondary radiation spectrum can not be simulated using Geant4-DNA models
- Current approach: development of a hybrid physics list
 - Geant4-DNA physics models in applicable energy range
 - Geant4 physics models applied outside of these ranges

Geant4-DNA Space Physics List

- As of Geant4.11.01-beta01, the implementation of the *G4EmDNABuilder* class includes a method for initialising Geant4 physics outside of the applicable Geant4-DNA range
- However, activation of this technique leads to conflicting results of radiochemical yields:

Radiochemical Yields

• The chem6 extended example scores the radiochemical yield *G* which is a function of time and LET:

$$G = \frac{\text{Number of species}}{100 \text{eV of deposited energy}}$$

- The geometry is a water box
- Scoring of radiochemical species is performed between 1ps and 1us.

Radiochemical Yields

- Radiochemical yields tracked for different proton energies and different physics list combinations
- Variations when Geant4 physics is enabled for electrons in the *Geant4-DNA energy range for electrons*

Radiochemical Yields

- G tracked for activation of different electron physics processes
- Difference arises only upon activation of Geant4-DNA e⁻ ionisation models

• The stopping power of electrons and protons are the same for all energies, regardless of Geant4 and Geant4-DNA combination

- The occurrence of physics processes was tracked for e⁻s and protons in water as a function of energy
- Scoring only the first process for an incident particle shown below
- No variation in the process frequency is observed for protons

- The occurrence of physics processes was tracked for e⁻s and protons in water as a function of energy
- Similarly, no difference observed for the first process in electrons:

- To check whether additional processes occur for secondaries, the relative frequency of processes for primary and secondary electrons were tracked
- No differences in the process frequency observed between primaries and secondary electrons for Geant4-DNA only physics

- To check whether additional processes occur for secondaries, the relative frequency of processes was tracked for different energies
- No differences in the process frequency observed between primaries and secondary electrons for the merged physics list

Conclusions

- Goal: develop a hybrid Geant4 and Geant4-DNA physics list for cosmic nanodosimetry
 - To be coupled then with hadronic physics
- Currently, a hybrid em physics list causes an increased radiochemical yield due to e⁻ ionisation activation
- However, the frequency of the process is not observed to change so the origin is still unknown
- Any comment/suggestion would be helpful