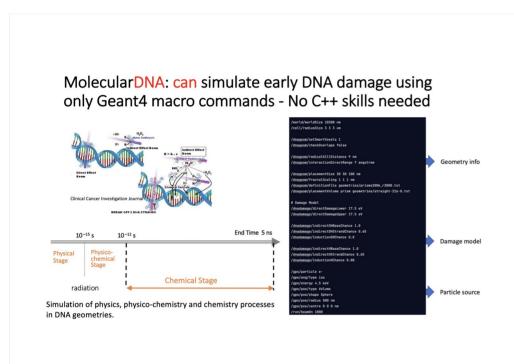
Parallel 3A: Basic, Extended and Advanced Examples

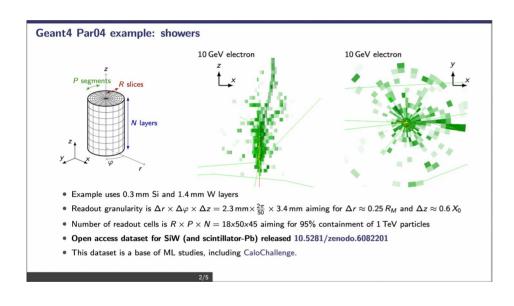
I. Hrivnacova¹⁾ S. Guatelli²⁾

- ¹⁾ IJCLab Orsay (CNRS/IN2P3)
- ²⁾ University of Wollongong, Australia

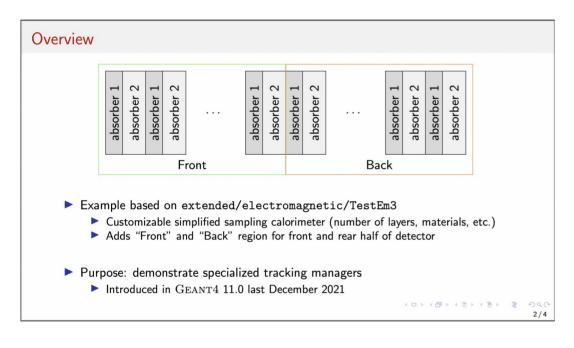
hadronic/ParticleFluence	Alberto Ribon
TD1	14:00 - 14:07
dna/moleculardna - Hoang Tran	Hoang Tran
TD1	14:07 - 14:14
Parameterisations/Par04	Anna Zaborowska
TD1	14:14 - 14:21
runAndEvent/RE07	Jonas Hahnfeld
TD1	14:21 - 14:28
Update on the basic and extended examples	Ivana Hrivnacova
TD1	14:30 - 14:45
Update on the advanced examples	Susanna Guatelli
TD1	14:45 - 14:55
Fast drawing in the "ICRP HumanPhantoms"	John Allison
TD1	14:55 - 15:05
An advanced example for 3D imaging of microscopic samples by proton tomography	Zhuxin Li et al.
TD1	15:05 - 15:20
Update on the advanced example Radioprotection	Jacopo Magini et al.
TD1	15:20 - 15:30


New Extended Hadronic Example:

ParticleFluence


Alberto Ribon (CERN EP-SFT)

Geant4 Collaboration meeting, Rennes, 27 September 2022


- Motivated by recent ATLAS has report of significant changes in particle fluence between Geant4 10.1 and 10.6
- Dedicated test for particle fluence in four setups: Layer, Sphere, ConcentricSpheres and Calo (cylindrical colorimeter)
- For regression testing comparing Geant4 versions

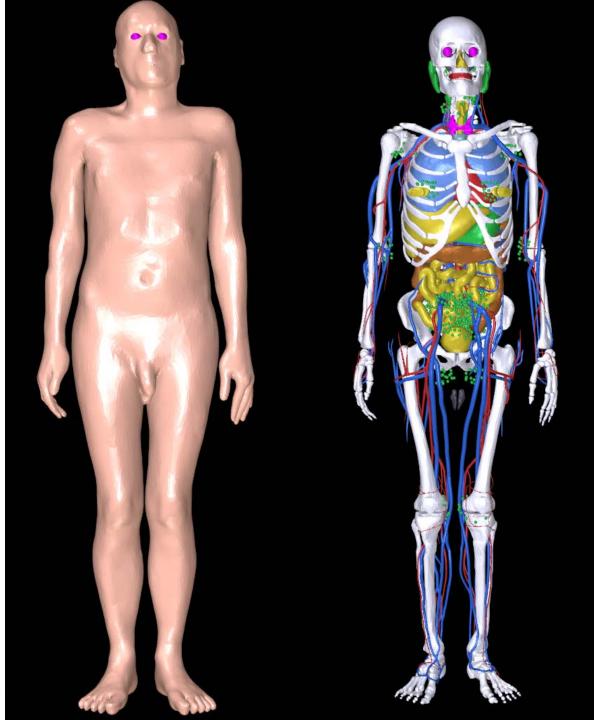
- « molecularDNA » example
- Hoang Tran
- Physics, physico-chemistry and chemistry processes in DNA geometries
- Modular geometry model allowing to define complex geometries in an easy way
- https://geant4-dna.github.io/molecular-docs/
- Contributors:
- J.M.C. Brown, K. Chatzipapas, M. Dordevic, S. Incerti, M. Karamitros, N. Lampe, D. Sakata, W.G. Shin

- parameterisations/Par04 example
- Dalila Salamani, Anna Zaborowska
- Demonstrates how to use the Machine Learning (ML) inference to create energy deposits as a fast simulation model using ONNX runtime and LWTNN libraries.
- The model used in this example was trained externally (in Python) on data from this examples' full simulation and can be applied to perform fast simulation.
- The python scripts are available in the training folder

- examples/extended/ runAndEvent/RE07
- Demonstration of Specialized Tracking Managers
- Jonas Hahnfeld
- RE07 has three modes (/setMode UI command):
 - 1. processes: use G4EmStandardPhysics (opt0), the default mode
 - 2. tracking: specialized tracking manager for e± and γ (same physics as opt0)
 - 3. specialized: an assortment of possible use cases:

Common Ongoing Tasks

- Followed at the WG wiki:
 - https://twiki.cern.ch/twiki/bin/view/Geant4/NoviceExtendedExamples
- Coding Guidelines
 - Updated in 2021 Version 2.1 (at the new Geant4 web site)
- Macro and UI Commands Review
 - Progressing slowly, the biasing examples commands/macros reviewed for 11.1 release
- Clang tools configuration

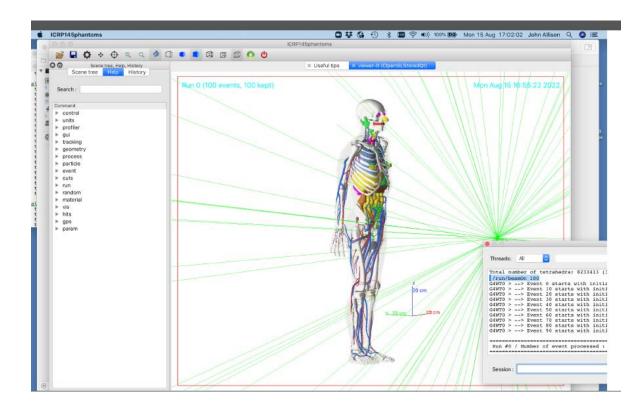

Update on the Advanced Examples

27th Geant4 Collaboration Meeting 26th-30th September 2022, Rennes, France

S. Guatelli and F. Romano
On behalf of the Geant4 Advanced Examples Working Group

New Advanced example in Geant4 11.p01: ICRP145Phantom

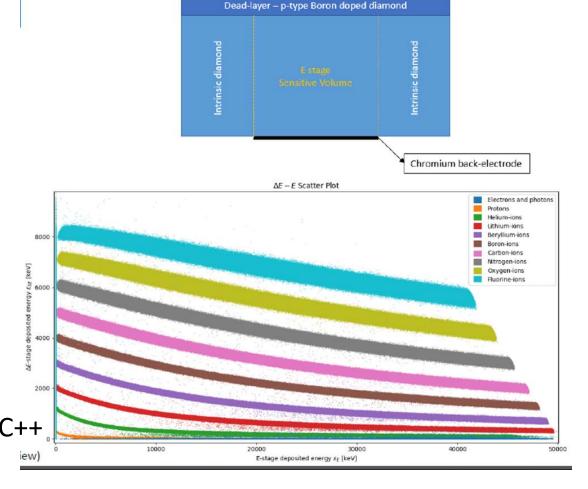
- ICRP Publication 145 on Adult Mesh-type Reference Computational Phantoms
 - Ann ICRP . 2020 Oct;49(3):13-201. doi: 10.1177/0146645319893605.
- Use of the General Particle Source
- Calculation of the dose in the organs of the phantoms
- To be released in Geant4 v.11.01, with the permission of the ICRP, in agreement with the original developers of the models/Geant4 simulation (available on the web):
 - Principal developer: Haeginh Han / Hanyang University,
 Republic of Korea
 - Min Cheol Han / Yonsei University Health System, Republic of Korea
 - Banho Shin / Hanyang University, Republic of Korea
 - Chansoo Choi / University of Florida, USA
 - Yeon Soo Yeom / Yonsei University, Republic of Korea
 - Jonghwi Jeong / National Cancer Center, Republic of Korea
 - Chan Hyeong Kim / Hanyang University, Republic of Korea
- Code review done


Fast drawing in the ICRP Human Phantoms examples series

- Modified to take advantage of developments in graphics_reps (Evgueni Tcherniaev) and in visualization (John Allison)
 - "Special Mesh Rendering": presented in the vis session by J. Allison and E. Tchaerniev
- The human phantom and beam trajectories can be visualised in a performant way
- Total number of tetrahedra: **8,233,413** (32,933,652 faces) are reduced to **4,807,770** facets (14%) for visualisation (tracking is not affected):

/vis/viewer/set/specialMeshRendering

/vis/viewer/set/specialMeshRenderingOption surfaces


/vis/drawVolume

Slide from the talk by J. Allison in parallel session 3A

Radioprotection advanced example

- Example that shows how to use Geant4 for characterisation of solid state detectors for space radiation protection
 - microdosimetry
- Collaboration between:
 - J. Magini, G. Parisi, G. Schettino (University of Surrey),
 - F. Romano (INFN)
 - S. Guatelli, D. Bolst (CMRP, UOW)
- New developments for 2023
 - Extend the applicability of the example to the development of detectors for particle therapy Quality Assurance
 - Improvement of UI commands to allow to non C++
 experts to customise the simulation
 - E.g. detector design
 - Include a two-stage diamond detector

Intrinsic

Figure from the talk by J. Magini in Parallel Session 3 A

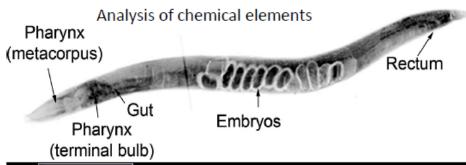
Chromium front-electrode

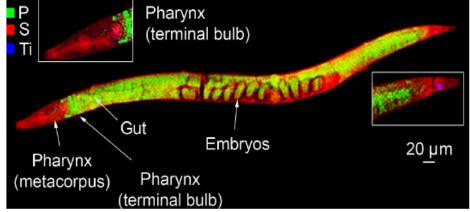
Intrinsic

New example in the pipeline

Proton imaging on biological micro-organism like Caenorhabditis elegans (C. elegans)

By Z. Li, C. Michelet and S. Incerti


Slide from the talk by Z. Li in parallel session 3A


Objective:

Understand the biological effects of contaminants, such as TiO2 nanoparticles, widely used in cosmetics, the food industry, paints, etc.

Methods:

STIM and PIXE tomography experiments

Non-destructive techniques, do not require marking, coloring...

- Spatial resolution ~300 nanometers in vaccum
- Detection limit ~1 ppm

STIM-T: Scanning Transmission Ion Microscopy tomography

Measurement of the residual energy of the protons after passing through the sample

- → Material thickness (g/cm²)
- → Visualization of the internal structure

Density Contrast Imaging ≈ Proton "Radiography"

PIXE-T: Particle Induced X-ray Emission tomography

Measurement of the energy of emitted X-rays

- → Location of chemical elements
- → Quantification

Minerals, trace metals, exogenous elements (here the nanoparticles of TiO₂)...

Other items of the Work Plan 2022

- Release of a new example showing how to import in Geant4 simulations IAEA Phase Space Files (2)[*] (M. Cortes Giraldo): postponed to next year
- Development of a SPring-8 synchrotron x-ray polarimetry example for testing low energy polarised gamma-ray physics (1,2) (J. Brown): postponed to next year
- Microelec advanced example: to include new Geant4-DNA cross sections for solid state materials beyond silicon (see talk in 5A by C. Inguimbert)
- Measurements and statistical analysis of size, McCabe, Halstead, Chidamber and Kemerer software metrics over at least 50% of the advanced examples; explication of the results in relation to ISO/IEC 9126 and ISO/IEC 25000 (1,2) (M. G. Pia): In progress
- Migration and improvement of the webpage (1,2) (S. Guatelli) Done (thanks to Dmitri, Anna and Alex!)
- Maintenance and code review in selected examples (1,2)
 - Technical meeting done with Ben Morgan; migration to C++11/14/17 done in brachytherapy, eRosita, human phantom, ICRP110Phantom, ICRP145Phantom
 - In-depth code review in the human_phantom
 - Make sure that all the examples use pre-built physics lists (where appropriate)

Other developments: to be done in 2023

Code review in iort_therapy

- Adaptation to FLASH electron radiotherapy
- By G. Miluzzo, J. Pensavalle & F. Roman

• Code review in **medical_linac**:

- Revision of the example
- Inclusion of comparison to experimental data documented in EURADOS Report 2020-05
- By B. Caccia, S. Pozzi, C. Mancini, et al

Other matters

- Give appropriate acknowledgment to external contributors to the Geant4 Collaboration
 - Delicate matter, especially for students
 - So far, we acknowledge the contribution in the README file and in the webpage
 - Can we do more?
 - E.g. certificate of contribution?
 - Other ideas?