Status of the G4-Med tests for bio-medical applications

S. Guatelli

On behalf of the Geant4 Medical Simulation Benchmarking Group

27th Geant4 Collaboration Meeting, Rennes, France, 26th-30th September, 2022

Tests with Geant4 11.p01 in geant-val

Tests done with:

- Bremmstrahlung
- Fano Cavity
- Dose Point Kernels
- LowEProtonBraggBeak
- Microyz
- Photon attenuation
- Brachy-Ir
- ElecBackscattering
- ElecForwardScattering
- NeutronYield
- Mammo
- BraggPeakGSI_MT
- LowEC12Frag
- NucNuclInelXS
- ProtonC12BraggPeak

In the process

- CCCTest
- C-12 Frag
- TestDEDX2
- Hadrontherapy
- Heavy ion therapy

- All tests are migrated to Geant4 11.00.p01
- Analysis is performed with Geant4 analysis (no dependency from external ROOT libraries) apart from C-12 Frag test (under migration)
- All tests have a History file to track changes

Results

- Regression testing: Geant4 10.5, 10.6, 11.0 p01
- To note:
 - I will just comment tests where there are differences with respect to Arce et al, Med Phys, 48 (1), 2021 (data obtained with Geant4 10.5)
 - At this stage the comparison is only qualitative

Photon fluence per incident electron b

Bremsstrahlung test

- 10.5 is the "outlier"
- Consistent behaviour for all tested EM physics constructors (Livermore, Penelope, EMStandard_option4, GS)
- Option3 should be added to the test

Fano Cavity test

- Extended example FanoCavity
- Change for G4EmStandardPhysics_option3

Image courtesy of Poon E, et al Phys Med Biol. 2005; 50:681.

G4EmStandard_opt0 G4EmStandard_opt3 G4EmStandard_opt4

Dose Point Kernel tests

- Calculation of the radial energy deposition profiles from isotropic sources of electrons
- Comparison against EGSnrc with no energy loss fluctuations
 - Goudsmit–Saunderson (GS) in Opt4 provides better agreement
- Same agreement for all the Geant4 versions (10.5, 10.6 and 11.p01)

Electron backscattering tests (1)

10.5, 10.6, 11.0 p01

- Better agreement in terms of backscattering coefficient for high Z, for G4EmStandard_option3
 - Probably due to optimisation of the msc parameters
 - RangeFactor=0.03 (from 0.04)
 - Use of 'SafetyPlus' step limitation instead of 'DistanceToBoundary'
- No change for G4EmStandard_option4, G4EmStandard_GS

Electron backscattering tests (2)

G4EmStandardPhysics_SS

It seems there is a general improvement in the Single Scattering model

Brachytherapy test

- I-125 brachytherapy source
- Exp measurements: Dolan J et al, Med. Phys. 33:12, 2006
- Since Geant4 10.6 better agreement with reference data at large distances for I-125.
- In G4Penelope, G4Livermore, G4EMOpt3, G4EmOpt4
- Probably due to multiple scattering
- Same results between 10.6 and 11.00.p01

Proton and carbon ion beam ranges in water

- Same results for incident protons and alpha particles
- Significant differences for carbon ions deriving from the new ion ionisation model G4LinhardSorensenIonModel with ICRU73 and ICRU90 data for energy < 2 MeV/amu, Linhard-Sorensen model above.
- Now this has been solved in the Geant4 11.1 beta release.
- Comment: it would be important to find a way to run all the tests before beta and public releases to support the development of Geant4 physics.

The G4-Med suite

UR: extend the tests to other medical applications

- 19 tests, on geant-val
- In-vivo PET C-12 test included after Geant4 10.5

- Next in the pineline:

- Include Geant4-DNA physics lists where applicable (e.g. Microdosimetry and DPK)
- X-ray small field dosimetry Susanna Guatelli, Ilia Filipev and Giordano Biasi, CMRP, UOW ready to be included in geant-val
- Include EPICS17 data libraries in the photon attenuation tests

- Later:

- Radioactive decay L. Desorgher et al
- Nuclear medicine tests A. Malaroda, S. Guatelli et al
- Photon energy fluence profile and thick target photon backscatter benchmark By J. Carrasco Hernandez, B. Faddegon and Jose` Ramos Mendez, UCSF
- Calculation of the wall correction factors, kwall, for two graphite ionization chambers P. Arce
- Include benchmark against ICRU Report 90: Stopping Powers of electrons (and positrons), protons, α particles and carbon ions for three key materials: graphite, air, and liquid water
- Include total inelastic cross section tests of production of C-10 and C-11 important for carbon ion in-vivo PET and Prompt Gamma imaging, E. Simpson, ANU: currently looking for a student to dedicate to this activity
- Validate Medical Linac advanced examples against EURADOS Report 2020-05

New tests

A quantitative assessment of Geant4 for QA in ion beam therapy

QMD

INCL

Yield and distribution of positronemitting fragments in heavy ion beam therapy

A. Chacon, M. Safavi et al, ANSTO

Validation against in-house experimental measurements performed at HIMAC, QST, Chiba, Japan

Table 1: Beam parameters for each ion species and energy. All beams had an energy spread of 0.2% of the nominal energy; 95% confidence intervals are listed for beam flux.

Ion	Energy (MeV/u)	$\sigma_x \; (\mathrm{mm})$	σ_y (mm)	Beam flux (pps)
$^{12}\mathrm{C}$	148.5	2.77	2.67	$1.8{\times}10^9 \pm 3.8{\times}10^7$
$^{12}\mathrm{C}$	290.5	3.08	4.70	$1.8{\times}10^9 \pm 6.4{\times}10^7$
$^{12}\mathrm{C}$	350	2.50	2.98	$1.8{\times}10^9 \pm 4.6{\times}10^7$
$^{16}\mathrm{O}$	148	2.79	2.89	$1.1{\times}10^9 \pm 2.8{\times}10^7$
$^{16}\mathrm{O}$	290	2.60	4.90	$1.1{\times}10^9 \pm 7.0{\times}10^7$

normalised mean square error (NMSE)

$$NMSE = \frac{\sum_{i=1}^{N_{reg}} |S_i - E_i|^2}{\sum_{i=1}^{N_{reg}} |E_i|^2}$$

Figure 5: The NMSE in the build-up and Bragg peak region using carbon beams for all positron emitting fragments.

0.5

Ceans4 version

phantom;

PMMA

MeV/u beam

phantom;

290 (f) Polyethylene phantom; 290

MeV/u beam

Figure 7: The NMSE in the build up and Bragg peak region using oxygen beams for all positron emitting fragments.

Gelatin

MeV/u beam

290 (e)

Remarks:

15

- The best model is BIC with Geant4 10.2
- 10.3-10.5 were generally the worst preforming across the test scenarios and these versions should be avoided if possible

Photon attenuation coefficients tests

Reference: NIST XCOM

New: Included EPICS17

 The results of the photon attenuation tests in water do not change when comparing 10.5, 10.6 and 11.0 cand01, 11.00.p01

Test for small field dosimetry

I. Filipev, G. Biasi, S. Guatelli, A. Rosenfeld, University of Wollongong

Source:

CyberKnife with IRIS collimator Field size: 60 mm PHSP plane is at 40 cm from isocentre along Z axis Phase-space files source: https://www-nds.iaea.org/phsp/photon/CyberK

nife IRIS/

Biasi G, et al. (2018) CyberKnife® fixed cone and Iris™ defined small radiation fields: Assessment with a high-resolution solid-state detector array. *Journal of applied clinical medical physics*, 19:547-57.

Fig. 2. The Octa is a 2D monolithic silicon array detector consisting of 512 diodes operated in passive mode and arranged in four intersecting orthogonal linear arrays. Each diode has a sensitive area of 0.032 mm² with pitch of 0.3 mm along the vertical and horizontal arrays and of 0.43 mm along the two diagonal arrays.

Last comments

geant-val

- Excellent platform to run tests
- Be able to run the tests of some reference tags
- In a longer term vision, it would help to have documentation on how to set-up and run the tests

Update on the webpage

- Waiting that the new Geant4 web page gets alive
- Use cases for medical physics: Webpage with recommendations, best physics list, for each use case, etc: collection of the use case.
- Information on basic/extended/advanced examples for bio-med applications

Paper number II

- Focus on the technical aspects of improvements in the physics of Geant4 for the med phys community (starting now)
- Regression testing of existing tests Geant4 version: 10.5 vs 11.p01
- New tests: in-vivo PET and small X-ray field dosimetry, Geant4 –DNA

TABLE II. Geant4 physics models to describe EM physics processes in Geant4 EM constructors under investigation.

Geant4	Op 10	Opt3	Opt4	Livermore	Penelope
Rayleigh scattering and photoelectric effect		Livermore			
Compton scattering	Standard	G4KleinNishina Model	G4LowEPComptonModel for E < 20 MeV* Brown et al ³⁶	Livermore for E <1 GeV*	PENELOPE for E <1 GeV*
Gamma conversion	Standard	Standard	PENELOPE for E < 20 MeV Standard for E > 20 MeV	G4BetheHeitler5DModel for E <1 GeV, Standard for E>1 GeV Bernard et al 2013 ³⁷	PENELOPE for E<1 GeV, Standard for E>1 GeV
e ⁻ and e ⁺ ionisation	Standard	Standard	Livermore for e ⁻ for E < 100 keV, PENELOPE for e ⁺ for E < 100 keV, Standard for E > 100 keV	Livermore for E <100 keV Standard for E >100 keV	PENELOPE
e^- and e^+ bremsstrahlung	Standard	G4SeltzerBergerModel for E <1 GeV, G4eBremsstrahlungRelModel for E >1 GeV			PENELOPE
e ⁺ annihilation	annihilation Standard				
e- and e+ multiple scattering	Urban model for E < 100 MeV (Ivanchenko et al ³⁹), Wentzel model for E >100 MeV	Urban model Goudsmit-Saunderson model (Incerti et al 2018a ³⁸) for E <100 MeV Wentzel model for E >100 MeV			
Coulomb scattering Bremsstrahlung angular distribution	on <i>ModifiedTsai</i>	off 2BS	On		PENELOPE

^{*:} G4KleinNishinaModel for higher energies. Geant4 10.5 is considered. For details on the models the reader should refer to the Geant4 Physics Reference Manual.**