Ideas for accelerating EM physics simulation in HEP Electromagnetic Plenary Session at 27th GEANT4 Collaboration Meeting

Jonas Hahnfeld, Mihály Novák (CERN, EP-SFT)

September 27, 2022

Ideas for accelerating EM physics simulation in HEP Contents

Woodcock tracking in $\operatorname{GEANT} \! 4$

Combining transportation and Multiple Scattering

Update on G4HepEm

Conclusions

Woodcock tracking in $\operatorname{GEANT4}$

Gamma transport in GEANT4

- ▶ Interactions added as separate processes
 - Rayleigh, photoelectric, Compton, conversion, gamma-nuclear, ...
 - ightharpoonup Corresponding macroscopic cross sections $\Sigma^p_{\gamma}(E, \text{material})$

Gamma transport in GEANT4

- ▶ Interactions added as separate processes
 - Rayleigh, photoelectric, Compton, conversion, gamma-nuclear, ...
 - Corresponding macroscopic cross sections $\Sigma_{\gamma}^{p}(E, \text{material})$
- N cross sections evaluated at every pre-step point
 - Path length till the next interaction follows exponential distribution: $s_p(E, \text{material}) \sim \mathbb{E} \text{xp}\left[\Sigma_{\gamma}^p(E, \text{material})\right]$

Woodcock tracking in GEANT4

Gamma transport in GEANT4

- Interactions added as separate processes
 - Rayleigh, photoelectric, Compton, conversion, gamma-nuclear, ...
 - Corresponding macroscopic cross sections $\Sigma_{\gamma}^{p}(E, \text{material})$
- N cross sections evaluated at every pre-step point
 - Path length till the next interaction follows exponential distribution: $s_p(E, \text{material}) \sim \mathbb{E} \text{xp}\left[\Sigma_{\gamma}^p(E, \text{material})\right]$
- ▶ Select shortest proposed step length: $s(E, mat) = min\{s_p(E, mat)\}$
 - ▶ BUT: track must be stopped at volume boundary / material change
 - ► To reevaluate cross sections, compute new path length, ...

Gamma general process in $\operatorname{GEANT4}$

lacksquare Step length $s(E,\mathsf{mat})$ is minimum of independent $s_p(E,\mathsf{mat}) \sim \mathbb{E}\mathsf{xp}\left[\Sigma^p_\gamma(E,\mathsf{mat})\right]$

Woodcock tracking in GEANT4

Gamma general process in GEANT4

- lacksquare Step length $s(E,\mathsf{mat})$ is minimum of independent $s_p(E,\mathsf{mat}) \sim \mathbb{E} \mathsf{xp}\left[\Sigma^p_\gamma(E,\mathsf{mat})\right]$
- Therefore, it follows exponential distribution of the sum: $s(E, \text{material}) \sim \mathbb{E} \text{xp} \left[\sum_{p} \Sigma_{\gamma}^{p}(E, \text{material}) \right]$

Gamma general process in GEANT4

- lacksquare Step length $s(E,\mathsf{mat})$ is minimum of independent $s_p(E,\mathsf{mat}) \sim \mathbb{E}\mathsf{xp}\left[\Sigma^p_\gamma(E,\mathsf{mat})\right]$
- Therefore, it follows exponential distribution of the sum: $s(E, \text{material}) \sim \mathbb{E} \text{xp} \left[\sum_{p} \Sigma_{\gamma}^{p}(E, \text{material}) \right]$
- Advantage: only evaluate total macroscopic cross section at pre-step point $\Sigma_{\gamma}(E, \text{material}) = \sum_{p} \Sigma_{\gamma}^{p}(E, \text{material})$

Gamma general process in GEANT4

- lacksquare Step length $s(E,\mathsf{mat})$ is minimum of independent $s_p(E,\mathsf{mat}) \sim \mathbb{E}\mathsf{xp}\left[\Sigma^p_\gamma(E,\mathsf{mat})\right]$
- Therefore, it follows exponential distribution of the sum: $s(E, \text{material}) \sim \mathbb{E} \text{xp} \left[\sum_{p} \Sigma_{\gamma}^{p}(E, \text{material}) \right]$
- Advantage: only evaluate total macroscopic cross section at pre-step point $\Sigma_{\gamma}(E, \text{material}) = \sum_{p} \Sigma_{\gamma}^{p}(E, \text{material})$
- Only need to evaluate individual cross sections if interaction happens during step $P_p(E, \text{material}) = \Sigma_{\gamma}^p(E, \text{material})/\Sigma_{\gamma}(E, \text{material})$

Propagation across volume boundaries

▶ Still need to stop at volume boundaries / material change

Woodcock tracking in GEANT4

Propagation across volume boundaries

- ▶ Still need to stop at volume boundaries / material change
- ▶ Introduce "artificial" δ -interaction with $\Sigma_{\delta}(E, \mathsf{mat}) = const. \Sigma_{\gamma}(E, \mathsf{mat})$

Propagation across volume boundaries

- ▶ Still need to stop at volume boundaries / material change
- ▶ Introduce "artificial" δ-interaction with $Σ_δ(E, mat) = const. Σ_γ(E, mat)$
- ▶ Thus $\Sigma(E) = \Sigma_{\gamma}(E, \mathsf{mat}) + \Sigma_{\delta}(E, \mathsf{mat}) = const.$ across materials
 - ▶ Step length $s(E) \sim \mathbb{E}$ xp [Σ(E)] till next real or δ-interaction
 - lacktriangle Real interaction happens with probability $P_{\gamma}(E, \mathsf{mat}) = \Sigma_{\gamma}(E, \mathsf{mat})/\Sigma(E)$

- $s(E) \sim \mathbb{E} \mathsf{xp}\left[\Sigma(E)\right]$ with $\Sigma(E) = \mathsf{max}\left\{\Sigma_{\gamma}(E, \mathsf{Abs}_i)\right\}$
- $s_i(E)$ might correspond to crossing several boundaries

- $s(E) \sim \mathbb{E} \mathsf{xp}\left[\Sigma(E)\right]$ with $\Sigma(E) = \mathsf{max}\left\{\Sigma_{\gamma}(E, \mathsf{Abs}_i)\right\}$
- $s_i(E)$ might correspond to crossing several boundaries
- Interact with probability $P_{\gamma}(E) = \Sigma_{\gamma}(E,\mathsf{mat})/\Sigma(E)$
- Several steps might be done without interaction (E = const.)

Example

Mean values per event of some selected quantities when modelling 10^4 , $E_0 = 10$ [GeV] e^- in a simplified sampling calorimeter (50 layers of [2.3 mm Pb + 5.7 mm 1Ar]).

		"Normal way"	Gamma-general	Woodcock(+GG)
F. [Mo\/]	Pb	7726.3	7725.9	7725.7
E _{dep} [MeV]	lAr	2145.6	2145.9	2145.6
	γ	5215.7	5216.2	5215.4
#secondary	e ⁻	8963.3	8931.2	8928.5
	e^+	538.5	538.3	538.3
#steps	charged	36548.4	36522	36860.5
#-steps	neutral	36963.4	36952.7	9600.8
Rel. perf. gain		0	\sim 5 [%]	\sim 15 [%]

lacktriangle Woodcock tracking active whenever a γ track is inside the Calorimeter and $E>200~{
m keV}$

Implementation

- ▶ Woodcock process derived from G4GammaGeneralProcess
 - ► Required very small modifications, released with GEANT4 11.0 (visibility of a method and some related members)

Implementation

- ▶ Woodcock process derived from G4GammaGeneralProcess
 - ► Required very small modifications, released with GEANT4 11.0 (visibility of a method and some related members)
- Process can be added exactly like G4GammaGeneralProcess
 - Additionally pass name of a region for Woodcock tracking

Implementation

- ▶ Woodcock process derived from G4GammaGeneralProcess
 - ► Required very small modifications, released with GEANT4 11.0 (visibility of a method and some related members)
- Process can be added exactly like G4GammaGeneralProcess
 - Additionally pass name of a region for Woodcock tracking
- ► Also experimented with specialized tracking (G4VTrackingManager)
 - ▶ Based on older version of process, not updated to latest improvements

Summary & caveat

- ▶ Woodcock tracking can significantly reduce number of neutral steps
 - ▶ Up to factor 2x 4x with observables in statistical agreement, but faster simulation
 - ▶ Preliminary results: up to 10 % overall improvement when applied to ATLAS EMEC

Summary & caveat

- ▶ Woodcock tracking can significantly reduce number of neutral steps
 - ▶ Up to factor 2x 4x with observables in statistical agreement, but faster simulation
 - ▶ Preliminary results: up to 10 % overall improvement when applied to ATLAS EMEC
- ▶ Breaks the important convention that tracks stop at volume boundaries!
 - ▶ Implication: pre-step point in different volume than (discrete) interaction
 - Requires update of user codes (sensitive detector and stepping action)

Problem statement

Somewhat similar problem with charged particles (here: electron):

Step#	[]	${\tt KineE}$	dEStep	${ t StepLeng}$	${\tt TrakLeng}$	Volume	Process
0	[]	10 MeV	0 eV	O fm	O fm	World	initStep
1	[]	10 MeV	1.214e-15 meV	4 cm	4 cm	World	Transportation
2	[]	9.469 MeV	530.7 keV	442.5 um	4.044 cm	G4_Pb	msc
3	[]	8.78 MeV	689.5 keV	549.8 um	4.099 cm	G4_Pb	msc
4	[]	8.167 MeV	612.5 keV	576.7 um	4.157 cm	G4_Pb	msc
5	[]	7.287 MeV	678.7 keV	535.8 um	4.21 cm	G4_Pb	eBrem
6	[]	3.789 MeV	4.844 keV	5.203 um	4.211 cm	G4_Pb	eBrem
7	[]	3.089 MeV	699.9 keV	560.4 um	4.267 cm	G4_Pb	msc
8	[]	2.912 MeV	177.5 keV	160.5 um	4.283 cm	G4_Pb	eBrem
9	[]	2.412 MeV	500 keV	490.5 um	4.332 cm	G4_Pb	msc
10	[]	1.938 MeV	473.7 keV	503 um	4.382 cm	G4_Pb	msc
11	[]	1.304 MeV	633.7 keV	502.7 um	4.433 cm	G4_Pb	msc
12	[]	796.1 keV	508.2 keV	437.5 um	4.476 cm	G4_Pb	msc
13	[]	173.7 keV	622.4 keV	462.1 um	4.523 cm	G4_Pb	msc
14	[]	0 eV	173.7 keV	65.48 um	4.529 cm	G4_Pb	eIoni

Problem statement

Somewhat similar problem with charged particles (here: electron):

:	Step#	[]	KineE	dEStep	${ t StepLeng}$	TrakLeng	Volume	Process
	0	[]	10 MeV	0 eV	O fm	O fm	World	initStep
	1	[]	10 MeV	1.214e-15 meV	4 cm	4 cm	World	Transportation
\cap	2	[]	9.469 MeV	530.7 keV	442.5 um	4.044 cm	G4_Pb	msc
	3	[]	8.78 MeV	689.5 keV	549.8 um	4.099 cm	G4_Pb	msc
l	4	[]	8.167 MeV	612.5 keV	576.7 um	4.157 cm	G4_Pb	msc
	5	[]	7.287 MeV	678.7 keV	535.8 um	4.21 cm	G4_Pb	eBrem
	6	[]	3.789 MeV	4.844 keV	5.203 um	4.211 cm	G4_Pb	eBrem
\mathcal{C}	7	[]	3.089 MeV	699.9 keV	560.4 um	4.267 cm	G4_Pb	msc
	8	[]	2.912 MeV	177.5 keV	160.5 um	4.283 cm	G4_Pb	eBrem
\cap	9	[]	2.412 MeV	500 keV	490.5 um	4.332 cm	G4_Pb	msc
	10	[]	1.938 MeV	473.7 keV	503 um	4.382 cm	G4_Pb	msc
	11	[]	1.304 MeV	633.7 keV	502.7 um	4.433 cm	G4_Pb	msc
	12	[]	796.1 keV	508.2 keV	437.5 um	4.476 cm	G4_Pb	msc
l	13	[]	173.7 keV	622.4 keV	462.1 um	4.523 cm	G4_Pb	msc
-	14	[]	0 eV	173.7 keV	65.48 um	4.529 cm	G4 Pb	eIoni

- ► MSC models give net effect of many scattering events
 - ▶ Must not make too long steps for approximations to remain valid
 - ▶ With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)

- MSC models give net effect of many scattering events
 - Must not make too long steps for approximations to remain valid
 - ▶ With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)
- No "real" interaction happens if track stopped by MSC
 - Only angular deflection and displacement; but no energy transfer, no secondaries

- MSC models give net effect of many scattering events
 - Must not make too long steps for approximations to remain valid
 - With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)
- No "real" interaction happens if track stopped by MSC
 - Only angular deflection and displacement; but no energy transfer, no secondaries

- MSC models give net effect of many scattering events
 - Must not make too long steps for approximations to remain valid
 - With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)
- No "real" interaction happens if track stopped by MSC
 - Only angular deflection and displacement; but no energy transfer, no secondaries

- MSC models give net effect of many scattering events
 - Must not make too long steps for approximations to remain valid
 - With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)
- No "real" interaction happens if track stopped by MSC
 - Only angular deflection and displacement; but no energy transfer, no secondaries

- MSC models give net effect of many scattering events
 - Must not make too long steps for approximations to remain valid
 - ▶ With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)
- No "real" interaction happens if track stopped by MSC
 - Only angular deflection and displacement; but no energy transfer, no secondaries

MSC step limitations

- MSC models give net effect of many scattering events
 - Must not make too long steps for approximations to remain valid
 - ▶ With fSafety step limit involves "range-factor" and "safety-factor"
 - Other options exist (fMinimal and fSafetyPlus)
- No "real" interaction happens if track stopped by MSC
 - Only angular deflection and displacement; but no energy transfer, no secondaries

Implications

- ▶ At every "interaction point", GEANT4 must handle the machinery of a full step
 - Evaluate cross sections to determine step length (before being limited by MSC)
 - Compute continuous energy loss and apply fluctuations
 - ► Call user actions and sensitive detector code

Implications

- ▶ At every "interaction point", GEANT4 must handle the machinery of a full step
 - Evaluate cross sections to determine step length (before being limited by MSC)
 - Compute continuous energy loss and apply fluctuations
 - Call user actions and sensitive detector code
- Experiments like CMS relax MSC step limitation where possible
 - fMinimal and rf = 0.2 in large parts of the detector
 - ightharpoonup Fewer steps ightarrow better performance

Implications

- ▶ At every "interaction point", GEANT4 must handle the machinery of a full step
 - Evaluate cross sections to determine step length (before being limited by MSC)
 - Compute continuous energy loss and apply fluctuations
 - Call user actions and sensitive detector code
- ► Experiments like CMS relax MSC step limitation where possible
 - fMinimal and rf = 0.2 in large parts of the detector
 - ightharpoonup Fewer steps ightarrow better performance
- Can we do better / be more efficient for the default settings?

 ${\tt G4TransportationWithMsc}$

- ▶ Combine transportation and MSC into one process: G4TransportationWithMsc
 - ▶ Inherit from G4Transportation for the actual transportation (linear or in field)
 - ▶ Implements code similar to G4VMultipleScattering that calls G4VMscModel

 ${\tt G4TransportationWithMsc}$

- ▶ Combine transportation and MSC into one process: G4TransportationWithMsc
 - ▶ Inherit from G4Transportation for the actual transportation (linear or in field)
 - Implements code similar to G4VMultipleScattering that calls G4VMscModel
- With /process/em/transportationWithMsc Enabled (since ref-04):
 - ▶ Identical results to using G4VMultipleScattering and G4Transportation
 - ▶ Tiny performance advantage with only one process / G4VParticleChange

Internal MSC stepping

- ▶ To solve the actual problem, take advantage of combined process:
 - 1. Receive the proposed (true) step length from other processes
 - 2. Determine MSC step limit & convert to geometric step length
 - 3. Transport track according to step length
 - 4. Apply MSC angular deflection and displacement
 - 5. If no boundary and step length left, go back to 2.
 - 6. Otherwise, track arrived at "true" interaction point

Internal MSC stepping

- ▶ To solve the actual problem, take advantage of combined process:
 - 1. Receive the proposed (true) step length from other processes
 - 2. Determine MSC step limit & convert to geometric step length
 - 3. Transport track according to step length
 - 4. Apply MSC angular deflection and displacement
 - 5. If no boundary and step length left, go back to 2.
 - 6. Otherwise, track arrived at "true" interaction point
- Caveat: have to update energy and range in stepping
 - Needed for MSC step limit, geometric step conversion, deflection sampling
 - Only mean energy loss, fluctuations are applied for the full step

Internal MSC stepping

- ▶ To solve the actual problem, take advantage of combined process:
 - 1. Receive the proposed (true) step length from other processes
 - 2. Determine MSC step limit & convert to geometric step length
 - 3. Transport track according to step length
 - 4. Apply MSC angular deflection and displacement
 - 5. If no boundary and step length left, go back to 2.
 - 6. Otherwise, track arrived at "true" interaction point
- Caveat: have to update energy and range in stepping
 - Needed for MSC step limit, geometric step conversion, deflection sampling
 - Only mean energy loss, fluctuations are applied for the full step
- Added in geant4-dev for ref-05, available in 11.1-beta
 - ► Enable with /process/em/transportationWithMsc MultipleSteps

Results

- Saved work for internal steps:
 - Evaluation of cross sections (instead handled by "integral approach")
 - ► Energy loss fluctuations (mean energy loss still needed)
 - User stepping action and sensitive detector code

Results

- Saved work for internal steps:
 - Evaluation of cross sections (instead handled by "integral approach")
 - ► Energy loss fluctuations (mean energy loss still needed)
 - User stepping action and sensitive detector code
- ► Testing with simplified sampling calorimeter (as before; replace lead by PbWO₄)
 - ▶ opt0 EM physics, simulating 10⁵ electrons at 10 GeV with 24 threads
 - lacktriangle Mean number of charged steps almost cut in half! (35975.5 ightarrow 18467.9)
 - \blacktriangleright Simulation time reduced by 16.5 % (524.5s \rightarrow 437.6s)

Summary

- ▶ Internal MSC stepping can significantly reduce number of charged steps
 - ▶ So far only tested for e[±] since computationally most important
 - Effect depends on chosen MSC step limit and parameters
 - Expecting same physics fidelity since steps just executed differently

- ▶ Internal MSC stepping can significantly reduce number of charged steps
 - So far only tested for e[±] since computationally most important
 - Effect depends on chosen MSC step limit and parameters
 - Expecting same physics fidelity since steps just executed differently
- Integrated into CMSSW and testing under way (no validation yet)
 - ▶ Little difference for Run3 geometry, bigger potential for Phase2 and HGCal
 - Preliminary results indicate $\approx 5\,\%$ improvement for FTFP_BERT_EMM, up to 20 % for FTFP_BERT_EMN with most precise GS settings

Reminder on the project goals

- ▶ R&D project by the Electromagnetic Physics Working Group
 - ▶ Investigate computing performance improvements for EM shower generation

Reminder on the project goals

- ▶ R&D project by the Electromagnetic Physics Working Group
 - ▶ Investigate computing performance improvements for EM shower generation
- Compact library of EM processes for HEP
 - \blacktriangleright Covers the complete physics for e^\pm and γ particle transport
 - ► See source code on GitHub and the documentation

Reminder on the project goals

- ▶ R&D project by the Electromagnetic Physics Working Group
 - ▶ Investigate computing performance improvements for EM shower generation
- Compact library of EM processes for HEP
 - lacktriangle Covers the complete physics for e^\pm and γ particle transport
 - ► See source code on GitHub and the documentation
- See also previous presentations
 - ► last Collaboration Meeting
 - ► Technical Forum in March 2021

Changes since last Collaboration Meeting

- ► Switched implementation of Multiple Scattering to Urban model
 - ► Facilitate experiment validation & eventual transition

Changes since last Collaboration Meeting

- Switched implementation of Multiple Scattering to Urban model
 - ► Facilitate experiment validation & eventual transition
- Added energy loss fluctuations
 - ► Simplified model based on GEANT4 11.0

Changes since last Collaboration Meeting

- Switched implementation of Multiple Scattering to Urban model
 - ► Facilitate experiment validation & eventual transition
- Added energy loss fluctuations
 - ► Simplified model based on GEANT4 11.0
- ▶ Integrated specialized tracking manager with GEANT4 11.0
 - Including the internal MSC stepping presented in the previous part (active by default, but can be deactivated)

Testing with experiments

- ATLAS
 - ▶ Investigated differences in multiple scattering between GEANT4 10.6 and 11.0
 - ▶ After some work, passed pre-validation in Athena framework

Testing with experiments

ATLAS

- ▶ Investigated differences in multiple scattering between GEANT4 10.6 and 11.0
- ► After some work, passed pre-validation in Athena framework

CMS

- Started testing integration with CMSSW
- ▶ Identified some CMake problems, but prototype working in general
- ▶ Not looked at results yet (neither performance nor validation)

Summary

▶ Many ideas for accelerating EM physics simulation in HEP

Summary

- Many ideas for accelerating EM physics simulation in HEP
- Presented two working prototypes for reducing number of steps
 - lacktriangle Woodcock tracking for γ , propagating across volume boundaries
 - ▶ Internal MSC stepping for charged particles (focus on e[±])

Summary

- Many ideas for accelerating EM physics simulation in HEP
- Presented two working prototypes for reducing number of steps
 - lacktriangle Woodcock tracking for γ , propagating across volume boundaries
 - ► Internal MSC stepping for charged particles (focus on e[±])
 - Both give results in statistical agreement, but faster!
- Working with simulation teams in ATLAS and CMS
 - ► Testing in realistic setups & with their requirements
 - ▶ Showing impressive gains for already well-optimized simulations