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Celeritas project overview

• Motivated by HL-LHC computational challenges 
and by recent success in GPU MC (ExaSMR)


• GPU-focused implementation of HEP detector simulation

• Physics derived from Geant4 methods and implementation

• Cross sections, materials, etc. loaded directly from Geant4


• Multi-institution collaboration with external contributors


• Funded through US DOE ASCR/HEP
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Near-term goal: integrate 
with Geant4 and experimental frameworks 

to offload EM tracks to GPU



Hardware considerations

• Modern HPC hardware relies primarily on GPU 
for computational throughput

• GP-GPU Conceptualized in early ’00s

• Very fast and power efficient for “graphics”-like 

applications


• “Many-core”: massively multithreaded


• Programming models require much more care

• Not good at flexible/dynamic operations

• Ideally lots of operations per memory access
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CPU

GPU
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html  
©NVIDIA Corporation, reproduced with permission



Challenges

• Execution: divergence and load balancing


• GPUs want every thread doing the same thing


• MC: every particle is doing something 
(somewhat) different


• Memory: data structures and access patterns


• GPUs want direct, uniform, contiguous access


• MC: hierarchy and indirection; random access


• Memory allocation is a particular problem

4

Structured grid data

Monte Carlo data



Code design
• Core principles


• Data-oriented programming (separate data from code)

• Object-oriented interfaces to data

• Composition-based objects

• Revisit legacy design/implementation choices


• Development workflow

• Extensive unit testing in CPU execution space

• Some unit testing and more integration testing on GPU

• In-depth merge request review process

• Continuous integration
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Easily refactored for new architectures, 
data models, performance

RNG State

Particle 
State

RNG

Particle

Particle 
Params

Interactor

Tests

Launcher

Model/
Action

Stepper

Model Data

Tests



Physics and geometry
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Particle Process Model

γ

photon conversion Bethe–Heitler
Compton scattering Klein–Nishina
photoelectric effect Livermore
Rayleigh scattering Livermore

e±

ionization Møller–Bhabha

bremsstrahlung Seltzer–Berger
relativistic

Coulomb scattering Urban MSC
e+ annihilation →(γ, γ)
µ bremsstrahlung µ brems

• Geant4 Standard EM physics (verification in progress)


• VecGeom (GDML) + ORANGE (experimental, AMD/HIP compatible)



Many differences from Geant4
• Code


• Separate “parameters” and “state”

• Separate “setup” and “runtime”

• Type-safe IDs and unit system


• Algorithms

• XORWOW random number generator

• Field propagation

• Event loop


• Physics

• Cross section interpolation
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Event loop on a GPU
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Inside a kernel
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Pre-step kernel Along-step kernel Discrete kernel

Boundary kernel
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Hit 
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Initial physics code comparison results
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Early performance testing

• TestEm3 — simplified calorimeter

• 50 alternating layers of Pb and lAr

• 10 000 10 GeV electron primaries split between 7 events


• Equivalent configurations of Celeritas/Geant4

• No magnetic field

• Disabled multiple scattering, energy loss fluctuations, Rayleigh scattering

• Excludes initialization time


• No spline interpolation in Celeritas (for now)

• ~3% performance penalty for Geant4 with spline

• Compensate by using 8× cross section grid points: <2% slower
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Early performance testing (results)

• 1–2 batches of 6 simultaneous 
runs on Summit (OLCF)

• CPU (Power9): multithreaded with 7 cores

• GPU (V100): one CPU plus one GPU


• 30–45× faster with GPUs

• Apples-to-apples: Celeritas CPU vs GPU

• Similar order-of-magnitude improvement 

irrespective of code

• 210–315 CPU core to GPU equivalence
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Work rate (events/s)
geo arch mean σ

Geant4 
10.7.1 Geant4 CPU 0.24 0.010

Celeritas 
8d83ebab 
(29 Apr 2022) 

ORANGE CPU 0.33 0.003
GPU 15.09 0.375

VecGeom CPU 0.36 0.006
GPU 11.17 0.075



New regression/timing suite

• 1300 10 GeV electrons per event, 
7 events per run (1 per CPU, 7 per GPU)


• Very preliminary set of problem definitions 
(working with AdePT team to develop)


• Not currently optimized (more on this later)


• Run on single node of Summit (6 separate runs 
simultaneously, different seed for each) 

• Initial results are apples-to-apples 
(Celeritas only)
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New performance results
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ORANGE 
VecGeom

Problem definition
A testem15
B simple-cms
C testem3
Z cms2018

Modifier
F +field
M +msc

• Higher “slot occupancy” (fraction of 
GPU track slots in use) 
→ better performance


• MSC slows GPU tracking by 2×


• Occasional tracking failures in field


• ORANGE and VecGeom show 
approximate performance parity

Fa
st
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New performance results

15
Multiply speedup by 7× for CPU:GPU equivalence*unconverged 

*some instances fail

ORANGE 
VecGeom

Problem definition
A testem15
B simple-cms
C testem3
Z cms2018

Modifier
F +field
M +msc



Crusher (pre-Frontier) performance
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Problem definition
A testem15
B simple-cms
C testem3
Z cms2018

Modifier
F +field
M +msc

• CPUs and GPUs are faster than 
those on Summit


• All ORANGE geometry


• Field propagation failures are 
being fixed


• No AMD-specific optimizations 
have been made

†

†

*some instances fail 
†requires VecGeom



CMS GPU step performance
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No field, no MSC
1T mag field along Z, Urban MSC



Fractional kernel time (CMS2018)
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CPU (no field/MSC) GPU (no field/MSC)

CPU (field+MSC) GPU (field+MSC)



Lazy and (probably) inefficient choices for now

• Same “field propagator” and MSC code path for 
neutral tracks 
(multiple along-step kernels switching on type/energy) 

• Always launching threads for all track slots on 
every kernel 
(partition tracks based on action and launch smaller grids) 

• All primaries start simultaneously 
(wait until “peak” of shower before starting a new event) 

• No inter-thread cooperation for physics/geometry 
(parallelize work by launching additional threads)
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Increase maximum track count
Cache log-energy
Add launch bounds
Use ldg for improved caching
Improve memory layout
Increase kernel occupancy

Additional optimizations to do



Key areas of continuing work

• Physics validation (physics models, progression problems, experiment-
specific)


• Experiment integration (Acceleritas + direct)


• Performance experimentation (there’s a long list) 

• International collaboration (AdePT, VecGeom, CMS, ORANGE)
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Conclusions

• Celeritas is a new specialized detector simulation code


• Current test problems show ~10–30× performance boost using 
GPUs on Summit (70–210× GPU/CPU core equivalence)


• Laundry list of fixes, features, validation, optimization to do


• Version 0.1.3 now available (install from source or Spack)
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https://github.com/celeritas-project/celeritas

https://github.com/celeritas-project/celeritas
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Backup slides
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Full benchmark results
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problem geo arch steps/primary time/primary time/step steps time unconv occ
cms2018 vecgeom cpu 7.155E+04 2.372E-02 3.316E-07 2.931E+08 97.2 0.0 0.99
cms2018 vecgeom gpu 3.222E+04 1.154E-03 3.582E-08 2.932E+08 10.5 0.0 0.19
cms2018+field+msc vecgeom cpu 5.243E+05 3.722E-01 7.099E-07 2.147E+09 1524.5 181427.5 1.00
cms2018+field+msc vecgeom gpu 6.437E+04 7.005E-03 1.088E-07 5.858E+08 63.7 97231.0 0.27
simple-cms+field+msc vecgeom cpu 6.193E+04 3.126E-02 5.047E-07 2.537E+08 128.0 1.5 0.13
simple-cms+field+msc vecgeom gpu 2.765E+04 2.166E-03 7.834E-08 2.516E+08 19.7 15.2 0.12
simple-cms+msc orange cpu 6.125E+04 1.875E-02 3.062E-07 2.509E+08 76.8 0.0 1.00
simple-cms+msc orange gpu 2.757E+04 3.917E-04 1.421E-08 2.509E+08 3.6 0.0 0.61
testem15 orange cpu 5.003E+04 1.253E-02 2.504E-07 2.049E+08 51.3 0.0 1.00
testem15 orange gpu 2.252E+04 2.695E-04 1.196E-08 2.049E+08 2.5 0.0 0.65
testem15+field orange cpu 5.008E+04 1.403E-02 2.802E-07 2.051E+08 57.5 0.0 1.00
testem15+field orange gpu 2.254E+04 2.504E-04 1.111E-08 2.051E+08 2.3 0.0 0.66
testem15+field+msc orange cpu 5.008E+04 1.808E-02 3.610E-07 2.051E+08 74.1 0.0 1.00
testem15+field+msc orange gpu 2.254E+04 2.658E-04 1.179E-08 2.051E+08 2.4 0.0 0.66
testem15+field+msc vecgeom cpu 5.008E+04 1.757E-02 3.509E-07 2.051E+08 72.0 0.0 1.00
testem15+field+msc vecgeom gpu 2.254E+04 2.825E-04 1.253E-08 2.051E+08 2.6 0.0 0.66
testem3-flat orange cpu 1.024E+05 2.257E-02 2.204E-07 4.193E+08 92.4 0.0 1.00
testem3-flat orange gpu 4.608E+04 3.824E-04 8.298E-09 4.193E+08 3.5 0.0 0.71
testem3-flat vecgeom cpu 1.024E+05 2.158E-02 2.108E-07 4.193E+08 88.4 0.0 1.00
testem3-flat vecgeom gpu 4.608E+04 4.298E-04 9.328E-09 4.193E+08 3.9 0.0 0.71
testem3-flat+field orange cpu 1.024E+05 3.082E-02 3.009E-07 4.195E+08 126.2 0.0 1.00
testem3-flat+field orange gpu 4.612E+04 4.073E-04 8.831E-09 4.197E+08 3.7 0.0 0.71
testem3-flat+msc orange cpu 1.362E+05 4.760E-02 3.495E-07 5.578E+08 195.0 0.0 1.00
testem3-flat+msc orange gpu 6.129E+04 7.658E-04 1.249E-08 5.578E+08 7.0 0.0 0.68



Field propagator near-miss
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Field propagation edge case
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ORANGE surface-based tracking methodology
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Primary initialization Along-step

Boundary

Initialize
Find next step

Secondary 
initialization

Fast-initialize

Find safety

Move
(to boundary
or internal)

Cross boundary

Celeritas geometry interface
Position Volume Surface+Sense

(input) A —
Initialize A 1 —
Find step A 1 —
Move internal B 1 —
Move to bdy C 1 α inside
Cross bdy C 2 α outside
Move internal D 2 —

ɑ

1 2

A B C
ɑ- ɑ+

D

*exact handling of direction changes on boundaries



Life cycle of a track
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