GEANT4 11.0.p03 & 2022 planned developments

kernel modules

Gabriele Cosmo, CERN EP-SFT

for the Geant4 Collaboration

Outline

- Fixes introduced in patch releases 10.7.4, 11.0.2 and 11.0.3
 - Kernel modules
- Review of planned developments for 2022
 - Kernel modules
 - Physics (see talk after this)
- Detailed patch release notes:
 - http://cern.ch/geant4-data/ReleaseNotes/Patch4.10.7-4.txt
 - http://cern.ch/geant4-data/ReleaseNotes/Patch.11.0-2.txt
 - http://cern.ch/geant4-data/ReleaseNotes/Patch.11.0-3.txt
- ➤ List of planned features for 2022:
 - http://cern.ch/geant4/support/planned_features

Bugzilla tickets addressed

#2204 – Wrong sampling of scattering angle of light ion off Hydrogen	10.7.p04
#2346 – Mess in density effect data for hydrogen and helium	11.0.p02
#2466 – Degraded accuracy of the energy loss fluctuation (G4UniversalFluctuation model)	11.0.p02
#2468 – G4NDL/Capture/FSMF6 photon treatment	11.0.p02
#2471 – Segmentation fault in G4OpBoundaryProcess	11.0.p02
#2474 – Incorrect value of the mean excitation energy (I) of carbon (G4_C)	11.0.p02
#2480 – In CMS FTFP_BERT_EMM electromagnetic response of the hadronic calorimeter is reduced	11.0.p02
#2482 – Wrong setter called in G4OpWLS2	11.0.p02
#2485 – geant4-config: wrong -I flag	10.7.p04
#2486 – Extra warning/crashes when build compound materials in CMS	11.0.p02
#2492 – /process/eLoss/StepFunctionIons does not work 11.0.p03	10.7.p04
#2495 – Problem dEdx and ranges for low-energy ions	10.7.p04
#2502 – Crash during geometry test in multi-threaded simulation	11.0.p03

Patches - Geometry & Persistency

Solids/Boolean:

11.0.p02

- G4UnionSolid: fix to add surface tolerance in Inside(p) for check on Z. Minor optimisation in constructors and in caching half-tolerance
- Management:

11.0.p03

- Added protection in G4GeometryManager for Open/CloseGeometry() to be executed only by master thread
- Addressing problem report #2502
- Navigation:

11.0.p02

- In G4RegularNavigation, reset the zero step counter when a non-zero step is performed, to avoid aborted events
 - Based on <u>GitHub PR#38</u> report
- Volumes:

11.0.p02

- Extended getter methods in volumes/solids stores to optionally return the last-found object
- Persistency/ASCII:

11.0.p02

- In G4GDMLReadMaterials, fixed default temperature to 20° C (NTP_Temperature)
- Addressing the case of solid/volume name duplication when reading more than one GDML file

Patches - Global, Parameterisations, Run

Global:

11.0.p02

- In G4PhysicsModelCatalog, fixed typos in Bremsstrahlung models name
- Parameterisations:

11.0.p03

- Fix in GFLASH to make the HitMaker compatible with command-based scorer
- Run:

11.0.p02

 Fix in G4RunManagerKernel to check for correct state in the creation of the default exception handler

Patches – Materials, Particles

Materials:

11.0.p02

- Fixed density effect correction for liquid hydrogen
 - Addressing problem report #2346
- In G4Material, reorganised AddElement(..) and AddMaterial(..) methods, to use temporary vector for allowing addition of the same elements during initialisation
 - Addressing problem report #2486
- G4NistMaterialBuilder: fixed mean ionisation potential of carbon to NIST value
 - Addressing problem report #2474

• Particles:

11.0.p03

Fixes for transportation of hypernuclei and anti-hypernuclei

Patches – Digits_Hits, Configuration

Digits_Hits:

11.0.p02

- Added missing virtual keywords in G4VScoringMesh
- Configuration:
 - Updated extraction of include paths from VecGeom to use imported target
 property

 11.0.p03
 10.7.p04
 - Addressing problem report #2485
 - Fix for CPack on Windows

11.0.p02

2022 Planned Developments Kernel

✓ In progress...

✓ Achieved already either in 11.1-beta or development releases

Infrastructure

- Enhancements to Geant4 GitLab workflow
 - Review use and integration of automatic performance monitoring tools
 - Additional Geant4Bot capabilities
- Modularization of Geant4 Libraries (global/granular/optional)
 - Identify libraries/modules for merging, splitting, drop/add to a build
 - Profile modularization scheme to ensure performance is not affected
- Enhancements to build system
 - Review mandatory and optional compiler flags needed to build and link to Geant4
- Optimization of Data Libraries
 - Simplify data library configuration/location
 - Review interfaces for data libraries, evaluate API and format changes
- Review need for dedicated sequential only build mode
 - Support sequential applications fully through Tasking Framework
- Move Geant4 web site to Jekyll with Git managed content
- Migrate Geant4 Python module G4Py from Boost to pybind11
- Integration of automated performance monitoring

Geometry & Transportation

- VecGeom
 - Prototype study on surface bounded volumes
 - Support for single precision in data structures and navigation API
 - Improved CUDA support and portability of SIMD-aware solids
 - Handling of construction and run-time errors
 - Implementation of missing shapes/entities in GDML reader
 - Code simplification, removal of unused API/backends
 - Adoption of Gitlab CI & extended platforms support
- Validation/consolidation of interface with navigator based on VecGeom ✓
 - Improve robustness of current interface/adapter to VecGeom navigator, testing & code integration
- Separate safety computation and its state from navigator
 - Loose coupling of navigator in computation of safety distances from geometrical boundaries
- Prototype navigation indexing class
 - An integer index identifying touchables & associated transportation process
- Alternative BVH navigator and optimization structure
 - Navigation based on Bounded Volume Hierarchy (BVH) technique, either natively in Geant4 or through VecGeom

Magnetic Field & Biasing

Magnetic Field

- Addition of QSS integration methods (Quantized State Simulation)
 - Alternative integration method which creates adapted polynomials and evaluates the limit of their validity
- Review accuracy of boundary crossing in field (ALICE and CMS requirement)
- Symplectic low/high order field integrators (GSoC HSF project)

Generic Biasing

- Biasing of charged particle interaction occurrence
- Prototyping of DXTRAN-like functionality
- Extend generic biasing scheme for at rest case

Reverse Monte-Carlo

- Migration to multi-threading and improvements
- Use of Reverse MC in parallel geometries

Fast Simulation & Analysis

Fast Simulation

- Modernisation of EM shower parameterisation
- Machine Learning studies on the current model, meta learning for real detector geometries \checkmark
- Revision of Fast simulation framework
- Revision of GFlash models
- Investigation on relevance of using a specialised tracking for triggering fast simulation

Analysis

- Support for multiple output types for n-tuples
- Addition of flexibility in resetting/deleting histograms
- Review support for writing same histogram/profile in a file several times (object versions)
- Organisation of third-party code (HDF5, expat, zlib) in externals/g4tools

Tracking, Run, Detector Response, Scoring & UI

Tracking:

- Redesign and implementation of G4ForceConditions
- Multi-threading & Tasking:
 - Reorganization of Run, Tasking and Event categories
 - Sub-event level parallelism prototype
 - Study on parallelisation of initialisation stage
- Scoring
 - Refinement of scorer functionalities and their drawing methods
 - Support of IAEA phase space files for GPS
- UI
 - Change binding tool from boost-c++ to pybind11
 - Code updates to C++11/14/17 style

Visualisation

OpenGL/Qt drivers:

- Migration to Qt6
- Improvements to toolbar in OpenGL Qt
- Improvements on sceneTree
- Fix issue with parametrized volumes
- Adapt to newer OpenGL versions, exploit new functionalities and replace deprecated calls such as glBegin/glEnd

Open Inventor:

- Refinements and extensions to the Open Inventor Qt Viewer
- Work on reference path to move through the geometry
- Improved use/install of Coin library
- Interaction OI viewer / UI Qt

Other drivers:

- Vtk driver: fully develop large renderings for medical applications
- Improvements and further developments to native Qt3D driver
- Improvements and further developments to tools_sg (TSG) driver based on g4tools
- Provide 2min videos for each viewer
- Development of visualisation solutions for iOS and Android devices

Novice & Extended Examples

- Development of a new example on polarisation
- New example for sub-event parallelism
- New hadronic examples for monitoring particle fluence
- Update of selected EM/hadronic examples with usage of G4Accumulable
- New example illustrating generic biasing for "DXTRAN" MCNP-like option and implicit capture
- New gflash parameterisation example for sampling calorimeter
- Porting of Geant4e and related example to multi-threading
- Medical & DNA
 - New radio-biology extended example
 - Validation and development with protons and He4 ions in molecularDNA example
 - New example for the RBE/LET calculation
 - Microdosimetry spectra in a cylindrical domain at the specific water depth imitating silicon detector
 - New medical example for ultra-high dose rate
 - Inclusion of new cross-sections for gas materials in the "icsd" Geant4-DNA example
 - Add the possibility to use the SBS method in the DNA "scavenger" example
 - Implement DNA damage in plasmids with IRT
 - Extension to the DICOM reader to support RT Dose format
- Review of examples macros and tests (coverage of commands and use-cases)
- Complete application of coding guidelines

Advanced Examples

- Development of a specific example for proton tomography
- Further developments of in-silico experimental microdosimetry in the Radioprotection example
- Development of a mammography example
- Development of a SPring-8 synchrotron x-ray polarimetry example for testing low energy polarised gamma-ray physics
- New example showing how to import in Geant4 simulations IAEA Phase Space Files
- Code review, migration to C++17 and coding guidelines
- Measurements of software metrics and statistical analysis over the examples

Thanks!