Technical Forum

Update of the optical light transport in Geant4 to model optical coating

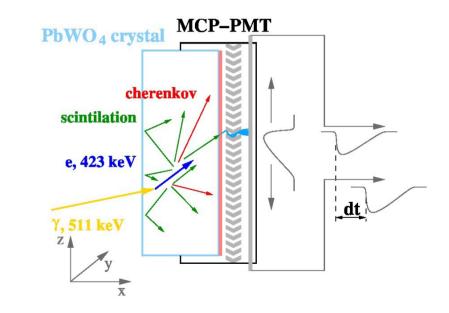
L. Cappellugola, M. Dupont, S. Curtoni, C.-H. Sung, V. Sharyy, D. Yvon, T. Proslier and C. Morel

- I. Context: the ClearMind project
- II. Implementation in Geant4
- III. Transmittance through thin layer
- IV. Comparison between theoretical and simulated transmittances
- V. Experimental validation of the implemented model

Laurie Cappellugola Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

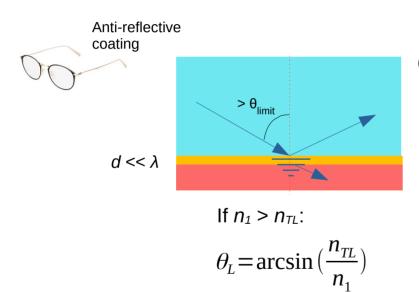
I. Context: the ClearMind project

Laurie Cappellugola



Introduction of the ClearMind project

- Collaboration between CEA-IRFU, IJCLab and CPPM
- New PET detector with improved spatio-temporal resolution
 - PWO crystal: Cerenkov (21 photon/event at 511 keV) and scintillation (200 photon/event at 511 keV) production, with fast constants (~2 ns)
 - Deposit the photoelectric layer (n_{PC} > n_{PWO}) directly on the crystal: scintronic crystal to improve detection efficiency
 - Use Micro-Channel Plate (MCP-PMT) for precise timing
 - Passivation of PWO/PC interface to protect photocathode from oxidation

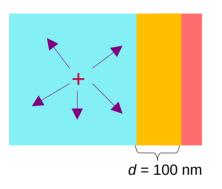


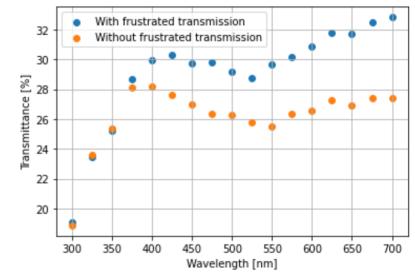
Consequences

- Interference phenomenon at the interfaces
- For $\theta > \theta_L$ an evanescent wave is produced and allows **frustrated transmission**

Iridescence phenomenon

Near field microscopy




Importance of the frustrated transmission

- Three medium PWO, TL, PC
- TL: thin layer with 100 nm thickness
- Absorption length of the crystal is fixed
- Optical photons generated from the center of the cristal
- Isotropically

Transmittance to photocathode with and without frustrated transmission as a function of wavelength for isotropic photon generation

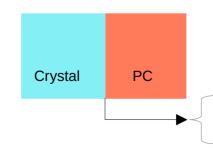
- Transmittance increases by 4 % thanks to frustrated transmission
 - → Simulation of thin layer phenomena is essentials

II. Implementation in Geant4

Integration of thin layer in Geant4

• New function in G4OpBoundaryProcess class,

based on DielectricDielectric()


```
void DielectricMetal();
void DielectricDielectric();
void DielectricLUT();
void DielectricLUTDAVIS();
void DielectricDichroic();
void CoatedDielectricDielectric();
```

New Surface Type:

```
enum G4SurfaceType
{
    dielectric_metal,
    dielectric_dielectric,
    coated,
    dielectric_LUT,
    dielectric_LUTDAVIS,
    dielectric_dichroic,
    firsov,
    x_ray
};
```

New Status:

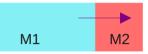
```
enum G4OpBoundaryProcessStatus
{
    Undefined,
    Transmission,
    FresnelRefraction,
    FresnelReflection,
    TotalInternalReflection,
    LambertianReflection,
.
.
.
.
.
Dichroic,
CoatedDielectricReflection,
CoatedDielectricRefraction,
CoatedDielectricFrustratedTransmission
};
```


- thickness ? → Thickness *TL*
- refractive index ? → RindexTL
- frustrated?

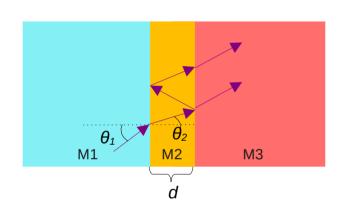
III. Theoretical transmittance through the thin layer

Laurie Cappellugola

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France



Fresnel coefficient (used by DielectricDielectric())


		Reflection	Transmission
Normal incidence		$r_{ij,TE} = r_{ij,TM} = \frac{n_i - n_j}{n_i + n_j}$	$t_{ij,TE} = t_{ij,TM} = \frac{2 n_i}{n_i + n_j}$
Oblique incidence	$\theta_i < \theta_{_{\parallel}}$	$r_{ij,TE} = \frac{n_i \cos \theta_i - n_j \cos \theta_j}{n_i \cos \theta_i + n_j \cos \theta_j}$ $r_{ij,TM} = \frac{n_i \cos \theta_j - n_j \cos \theta_i}{n_i \cos \theta_j + n_j \cos \theta_i}$	$t_{ij,TE} = \frac{2 n_i \cos \theta_i}{n_i \cos \theta_i + n_j \cos \theta_j}$ $t_{ij,TM} = \frac{2 n_i \cos \theta_i}{n_i \cos \theta_j + n_j \cos \theta_i}$
	$\theta_i > \theta_1$	Total internal reflection	

Formulas of reflection and transmission

Coefficient of transmission and reflection through thin layer

(used by CoatedDielectricDielectric())

$$\theta_{1} < \theta_{L}: \qquad \theta_{1} \geq \theta_{L}:$$

$$\theta_{2} \text{ existed} \qquad \theta_{2} \text{ doesn't existed} \qquad \text{remplacing } n_{2} \cos \theta_{2} \text{ by } i\gamma \text{ in Fresnel coefficient}$$

$$\beta = k_{2} d \cos (\theta_{2}) \qquad \beta = \sqrt{n_{1}^{2} \sin (\theta_{1})^{2} - n_{2}^{2}}$$

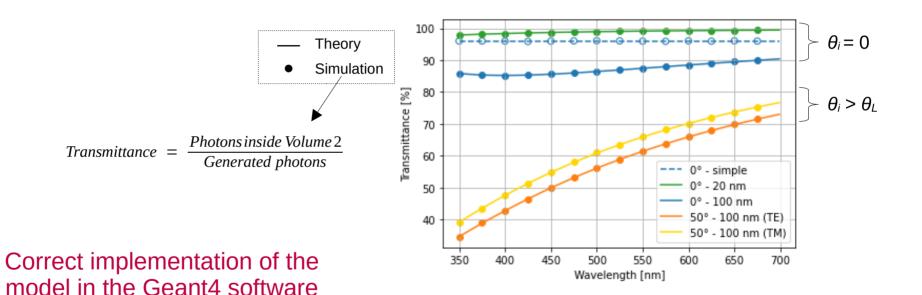
$$\beta = ik_{0} d \gamma$$

$$k_{2} = n_{2} \frac{2 \pi}{\lambda} = k_{0} x n_{2}$$

Not possible in Geant4 yet

IV. Comparison between theoretical and simulated transmittances

Correctness of the implementation


Aix*Marseille

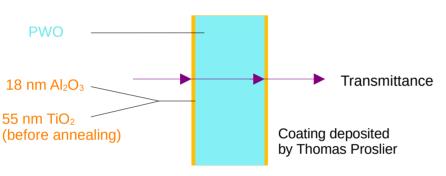
	What we want to simulate		What we code in Geant4
Simple interface	<i>n</i> ₁ = 1.5	<i>n</i> ₂ = 1.0	Physical and Logical Volume: 1 and 2 Optical Surface Types: <i>dielectric_dielectric</i> Optical photons generated inside M1
Interface composed with thin layer	n₁ = 1.5	$n_2 = 1.5$	Physical and Logical Volume: 1 and 2 Optical Surface Types: coated → Thickness and Refractive Index of TL Optical photons generated inside M1

Correctness of the implementation

V. Experimental validation of the implemented model

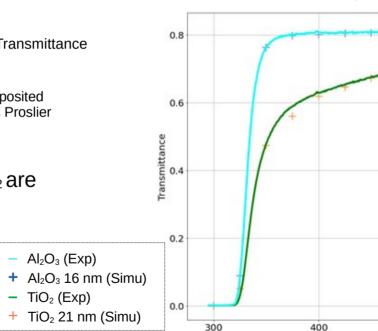
Laurie Cappellugola

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France



15

Experimental validation



Hypothesis:

- Refractive index of Al₂O₃ and TiO₂ are known

Unknown variables:

- Thickness of passivation layer
- Refractive index of PWO
- Attenuation length of PWO

600

Transmittance as function of wavelength, through a window optically coated on both its faces, depending of the thin layer materials

500

Wavelength (nm)

700

Conclusion

- Simulation of transmittance through thin layer with Geant4 is essential to model the ClearMind detector
- Perfect agreement between simulated and theoretical transmittance
- The model has also been validated experimentally
- This update may be of interest for any modeling of light transport including optical coating in G4

