Future for Geant4 Python WARWICK

Ben Morgan

Why discuss the future of Geant4 Python bindings?

e NB: Playing devil’s advocate throughout to stimulate discussion - it is not a
criticism of work that has/is being done (I’'m supportive of bindings!!)

e Fundamentally a question on available FTE for development and user support
o Geant4Py only has a fraction-of-a-fraction of Koichi’s and my time
o The amount of work needed should not be underestimated - it’s effectively a
whole extra system to test, validate, provide examples for, and document.
o Also consider compiler/platform/Python version differences...
e Can we therefore maintain Geant4Py at production quality, long term?
o i.e. all features from C++ functional, documented alongside C++ version,
Pythonic versions of at least basic examples, validated for physics, performance

o I think the answer in the short term is “no”

Not a unique problem

e Career structure means we do lose developers - our “bus factor” can be very low for components,
especially over longer periods
o Technology also moves on, so tools/libraries/syntax can also be lost through obsolescence or lack of
upstream support
e Discussing the bus factor issue this week, but will inevitably have points where this drops to zero for
parts of Geant4 due to FTE/technology loss
o What do we do with the affected code then?
e Not suggesting it’'s immediately expunged from the repo, equally it shouldn’t remain indefinitely...
o Ithink we are very good at adding (good!) code/capabilities, less so at removing it when it is
becoming obsolete/unusable/no longer a requirement
O Should recognize that for users, code presence can => full, long term, support for it
e All this is really saying is we can and should be blunter about deprecating and then removing
unused/unmaintain(ed/able) components.
o Easy to mark code as such to provide early warning to users
o Also a way to identify ongoing requirements (as users may complain!), or to identify new
contributors (you want it, you maintain it!), or to make case for support to funders.

\Vavall

What, then, is the future for Geant4 Python?

® Perhaps the first thing is to regauge the user/stakeholder requirement for
having a Python (or any other language du jour) binding
o Actual level of interest beyond “nice to have/expected/don’t know C++”
o Use cases, though I think this boils down to “write example B1 in Python”
o More importantly, find people who would be willing and able to
contribute
e Already have a couple of places to start:
o Chats with GATE developers in early 2021 as they had looked at Python, but
little time to follow up since (but see Susanna’s presentation on Monday)
O Recent (2020) geant4 _pybind project on GitHub, which works very nicely

e Any other contacts/interested parties you know of?

with full “example B1 in Python”

https://indico.cern.ch/event/1156193/contributions/5050614/
https://github.com/HaarigerHarald/geant4_pybind

Wider community engagement?

® Broaden discussion through, e.g. HSF and other user communities.
o Why not have a topical meeting, say % day, on “Python/Julia/etc for
Simulation”...
O ...oruse the next Technical Forum?
O ...o0rausersurvey/questionnaire?
e COVID has meant we haven’t had a User’s Meeting in a long while
o Equally, rise and familiarity of virtual meetings could make this easier to
organise than ever...
® Again, the totally selfish aim here is to see if...
o ...there s a significant demand for Python/etc bindings to Geant4
o ...there is a pool of contributors sufficient to develop and support these

bindings at production quality over a non-trivial timescale

Development Model?

® (Could be contributor level within Geant4 to begin with
o | think we are probably talking about scrapping Geant4Py and starting from
something like geant4 _pybind as a base, depending on discussions/input with
developers/users
e Alternately, and perhaps more realistically, we support community efforts to
provide the functionality, somewhat like we do for CAD interfaces,
o One possibility here would be to host any future “Geant4 community Python”
on GitHub under our organization: https://qithub.com/geant4
o Not Geant4 itself, and only building on public release code, so no concern over
IP/physics validity of underlying toolkit?
o Equally, how to mark as “community provided”, ensure validation, avoid

e All of these, and preceeding, points are for discussion...

specialization for specific project etc?

https://github.com/geant4

