
Future for Geant4 Python

Ben Morgan



Why discuss the future of Geant4 Python bindings?
● NB: Playing devil’s advocate throughout to stimulate discussion - it is not a 

criticism of work that has/is being done (I’m supportive of bindings!!)

● Fundamentally a question on available FTE for development and user support
○ Geant4Py only has a fraction-of-a-fraction of Koichi’s and my time
○ The amount of work needed should not be underestimated - it’s effectively a 

whole extra system to test, validate, provide examples for, and document.
○ Also consider compiler/platform/Python version differences…

● Can we therefore maintain Geant4Py at production quality, long term?
○ i.e. all features from C++ functional, documented alongside C++ version, 

Pythonic versions of at least basic examples, validated for physics, performance
○ I think the answer in the short term is “no”

2



● Career structure means we do lose developers - our “bus factor” can be very low for components, 
especially over longer periods
○ Technology also moves on, so tools/libraries/syntax can also be lost through obsolescence or lack of 

upstream support
● Discussing the bus factor issue this week, but will inevitably have points where this drops to zero for 

parts of Geant4 due to FTE/technology loss
○ What do we do with the affected code then?

● Not suggesting it’s immediately expunged from the repo, equally it shouldn’t remain indefinitely…
○ I think we are very good at adding (good!) code/capabilities, less so at removing it when it is 

becoming obsolete/unusable/no longer a requirement
○ Should recognize that for users, code presence can => full, long term, support for it

● All this is really saying is we can and should be blunter about deprecating and then removing 
unused/unmaintain(ed/able) components.
○ Easy to mark code as such to provide early warning to users
○ Also a way to identify ongoing requirements (as users may complain!), or to identify new 

contributors (you want it, you maintain it!), or to make case for support to funders.

3

Not a unique problem



● Perhaps the first thing is to regauge the user/stakeholder requirement for 
having a Python (or any other language du jour) binding
○ Actual level of interest beyond “nice to have/expected/don’t know C++”
○ Use cases, though I think this boils down to “write example B1 in Python”
○ More importantly, find people who would be willing and able to 

contribute
● Already have a couple of places to start:

○ Chats with GATE developers in early 2021 as they had looked at Python, but 
little time to follow up since (but see Susanna’s presentation on Monday)

○ Recent (2020) geant4_pybind project on GitHub, which works very nicely 
with full “example B1 in Python”

● Any other contacts/interested parties you know of?

4

What, then, is the future for Geant4 Python?

https://indico.cern.ch/event/1156193/contributions/5050614/
https://github.com/HaarigerHarald/geant4_pybind


● Broaden discussion through, e.g. HSF and other user communities.
○ Why not have a topical meeting, say ½ day, on “Python/Julia/etc for 

Simulation”...
○ … or use the next Technical Forum?
○ … or a user survey/questionnaire?

● COVID has meant we haven’t had a User’s Meeting in a long while
○ Equally, rise and familiarity of virtual meetings could make this easier to 

organise than ever…
● Again, the totally selfish aim here is to see if…

○ … there is a significant demand for Python/etc bindings to Geant4
○ … there is a pool of contributors sufficient to develop and support these 

bindings at production quality over a non-trivial timescale

5

Wider community engagement?



● Could be contributor level within Geant4 to begin with
○ I think we are probably talking about scrapping Geant4Py and starting from 

something like geant4_pybind as a base, depending on discussions/input with 
developers/users

● Alternately, and perhaps more realistically, we support community efforts to 
provide the functionality, somewhat like we do for CAD interfaces, 
○ One possibility here would be to host any future “Geant4 community Python” 

on GitHub under our organization: https://github.com/geant4
○ Not Geant4 itself, and only building on public release code, so no concern over 

IP/physics validity of underlying toolkit?
○ Equally, how to mark as “community provided”, ensure validation, avoid 

specialization for specific project etc?
● All of these, and preceeding, points are for discussion…

6

Development Model?

https://github.com/geant4

