
Pyg4ometry 
load, manipulate, visualize, convert 
GDML, Fluka, CAD geometry

Stewart Boogert (stewart.boogert@rhul.ac.uk), Laurie 
Nevay, William Shields 

G4 technical forum, September 2022 

https://bitbucket.org/jairhul/pyg4ometry/src/develop/
http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/

https://bitbucket.org/jairhul/pyg4ometry/src/develop/
http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/


Introduction

Geometry tools in python for Geant4/Fluka/MCNP etc

• Develop a (rapid) workflow inspired from parametric CAD to modify geometry in a 
reproducible way

• Key technical development : python API for loading/manipulating geometry

• Have users

• Of course, my group at Royal Holloway ;-) 

• Accelerator community (PSI, ULB, CERN, DESY, Johannes-Universität Mainz, Warwick) 

• Laser/plasma (QUB)

• HEP (LHCb, Legend, MESA, LUXE, nuStorm) 

• Paper published

• New features discussed here (since https://indico.cern.ch/event/872309)

Paper : https://doi.org/10.1016/j.cpc.2021.108228

Manual : http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/

https://indico.cern.ch/event/872309
https://doi.org/10.1016/j.cpc.2021.108228
http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/


Features (see 2019 Technical forum talk)

Load
FLUKA

Load STL

Coverlap
detection

Load CAD

Parametric creation

Save FLUKA



Compositor system

Create a complete system with different geometry sources



Technology tools and dependencies 

Open CascadeVisualisation
Tool kit

ANTLR

Python

All dependencies are all open source
and well maintained 

Computational 
Geometry 
Algorithms

Library

Symbolic
Python



• IBA Protus One proton therapy 
system (ULB/IBA/RHUL)

• Viewed in Paraview

▪ HIPA PSI transfer line

▪ Transfer line from high power cyclotron

Users' applications 

https://doi.org/10.1140/epjp/s13360-022-02960-9 

7

KHE0

KHE0 shield

KHE2+KHE3

KHE1Target E

X
Y

Z

FIG. 6: BDSIM model of the Target E region (beam impact region in darkgreen). The beam is moving in the longitudinal Z

direct ion. Target E, rotat ing at 1 Hz, is made of graphite while all collimators are made of Copper. The shielding in which all
collimators are enclosed, is displayed in lightgray.

KHE2 following target E can be writ ten as follows:

σx = σx 0 + L
⇣
σ02

x 0 + #2
sc

⌘1/ 2

(3)

where σx 0 is the rms beam size at target E, L = 4.74 m the distance between target E and the collimator, σ0
x 0 is the

init ial beam divergence at the entrance of the target , and #sc is the rms scat tering angle account ing for the mult iple
Coulomb scat tering of the beam at the target . In 1941, Rossi amd Greisen derived the small angle mult iple elast ic
scat tering law from Rutherford’s single scat tering law [22]. It results that , for single charged project ile part icles, #sc

can be expressed in terms of the radiat ion length X R by:

#R
sc =

Es

pβc

r
X

X R

(4)

where X is the thickness of the target material, Es a constant whose value is 14 MeV (21 MeV in the original paper),
p the momentum and βc the velocity of the incident part icle. Later on, Highland improved the theory [23] so that

#H
sc =

E 0
s

pβc

r
X

X R

1 + 0.038 ln

✓
X

X R

◆

(5)

where E 0
s = 13.6 MeV. In addit ion, the radiat ion length can be approximated by:

X R = 1433 g cm− 2 A

Z (Z + 1)(11.319 − ln Z )
= 42.9745 g cm− 2 (6)

After impact ing TgM, the impinging proton beam energy at TgE reduces to 587 MeV so that #H
sc = 5.83 mrad.

Nevertheless, due to the presence of the first two collimators denoted KHE0 and KHE1, the e↵ect ive scat tering angle
of the remaining primary proton beam reaching KHE23 is #sc = 5.06 mrad as obtained in BDSIM.
Given that the horizontal aperture of KHE2 is twice smaller in the horizontal plane than in the vert ical one, it is
clear that most of the losses take place in the horizontal plane. Once the horizontal beam size is determined at the
ent rance of KHE2, the fract ional beam losses can be calculated by integrat ing the fract ion of the Gaussian beam
which is contained between the values -ax and + ax where ax = 40 mm is the horizontal aperture at the entrance of
KHE2:

pK HE23 =
I K HE23− − I K HE23+

I K HE23−

= 1−
1

p
2⇡σx

Z + ax

− ax

exp

✓

−
1

2

x2

σ2
x

◆

dx

= erfc

✓
ax

p
2σx

◆

= erfc

0

@
ax

p
2
h
σx 0 + L σ02

x 0 + #2
sc

1/ 2
i

1

A (7)

where erfc is the complementary error funct ion and the subscript + / - denotes the measured beam current at the

arXiv:2205.12536

https://doi.org/10.1140/epjp/s13360-022-02960-9
https://arxiv.org/abs/2205.12536


In house examples 



Geometry comparison

• When converting between geometry formats it is useful to compare 
geometries

• irrespective of if the conversion was done with pyg4ometry or not

• "Comparison" could mean strict equality, but also equivalence

• could construct geometry from different primitives but want to check the resultant volume

• we may know the geometry is different but want to compare within a tolerance

• General strategy:

• Tests class - Boolean flags of which things to test, e.g. solids, materials, volume, surface area

• TestResult class - pass / fail, details on what was compared, nice message if failed

• functions for each comparison, e.g. logicalVolumes, solids, materials, assemblies

• higher level functions, e.g. geometr(treeA, treeB), gdmlFiles(fileA, fileB)

• We choose the tests we want to run and apply them to a geometry tree 
producing a set of results that can be printed out or summarised

• Used by LHCb to compare their new MC geometry (GDML, ROOT, custom)



Geometry comparison

• Tolerance also for pointers in object names 

• A small example is a collimator for a CERN North Area beamline

• CAD-converted tessellated (original) solid vs. (new) geometry from primitives (for improved simulation speed)

• Compare by volume and surface area - exploit visualisation meshes in pyg4ometry!

• Visualise two geometries on top of each other as well as the difference to see the problem

wrong

corrected

in Geant4



• ROOT has excellent python bindings.

• ROOT’s TGeo is also excellent

• Format is being used (DD4Hep etc.)

• Load root file via standard bindings 
and transfer to pyg4ometry internal 
memory format

• Detector developers can check their 
geometry etc. 

ROOT file loading

LHCb Velo : T. Latham



• What if people provide geometry and 
it is just too much? (Happens a lot in 
accelerator community e.g., FCC-ee IR 
region)

• Need a good mechanism to safely 
trim the geometry safely

• Replace mother volume and 
recursively cut down the daughter 
volume solids using Boolean 
intersections

• Still needs developing for replica, 
parametric solids etc.

• Would avoid this as would cause and explosion of 
Boolean solids if not careful

Clipping geometry for reuse



• Follow CERN FLUKA

• Added materials

• Tested on relatively large experiment 
(LUXE)

• Planning on adding features beyond 
geometry (other non-geo CARDS)

Still problems with 

• General tessellated solids

• Twisted solids 

• Solution implemented using convex 
decomposition is very unstable and 
very time consuming, rarely works

• Might base new solution on tessellation 
or voxelization

Geant4 to FLUKA conversion



LUXE experiment

Non-linear QED experiment, planned for the EU.XFEL at DESY

• Measure Compton (BW) between laser and XFEL beam (Bremhstralung)

• Need FLUKA simulations for dump studies and radioprotection



1. Run lxsim and generate GDML 
geometry

2. Convert lxsim GDML geometry to 
FLUKA

3. Augment with control cards (BEAM, 
BEAMPOS…etc)

4. Run FLUKA jobs

5. Merge output from all jobs (utilities 
provided by Fluka)

6. Plotting in matplotlib and/or VTK 
(pyvista) 

Original conversion done by 1st year 
PhD student in hours

FLUKA workflow for LUXE

GMDL/pyg4ometry

Flair

Fluka output



• Geometry

• Very advanced conversion (written by me for 
another project) 

• Flair (GUI for FLUKA) would indicate geometry 
errors (overlaps)

• Materials 

• Converted from Geant4 down to isotopic 
composition

• Hard to independently check (could with 
simplified models i.e a block of material in 
G4/Fluka)

• Magnetic fields (3 important)

• Track test particles and dump all trajectories (see 
right)

Model verification

Electron-laser

Gamma-laser

No magnets

2D sections created by pyg4ometry, data : fluka dump



• CGAL is one of the most templated 
libraries I have ever encountered. 

• Previous soln :Push problem into monolithic C++ 
lib with very small API

• Loose power and utility of CGAL

• Split and bind sensible fraction of the CGAL API 
to python. Keeping as close to the CGAL API as 
possible

• Users can write their own algorithms! 

• Implemented tetrahedralization and 
mesh repair in hours 

Improved use of CGAL



• Previously used FreeCAD

• Exceptionally large dependency (but 
had python)

• Move towards OpenCascade (C++ 
library FreeCAD is based on)

• Complete replication of CAD model 
with 

• Assemblies (LV/AV)

• Parts (Solids/PVs)

• Allows the tessellation of CAD models 
in an efficient manner without 
creating too many tessellations etc. 

• Allows for the later replacement of 
tessellated objects with minimal 
effort

Improved CAD file handing

Note bene : excellent user control over mesh 
quality



• CERN PS beam pipes in Geant4

• Slightly curved and need to place them 
accurately as define the accelerator aperture

• CAD directly to STL is ok for 
simulation but how to place the 
object accurately?

• Extract data directly from CAD file 
and user can determine features 
that conversion can be based on 

CAD feature extraction



Really hindered adoption

• Skbuild (CMake) 

• Part of scikit-hep

• Meson (+pep517)

• Setuptools (+sprinkle of CMake)

Systemic python problem. 

• Plan to make package part of scikit-
hep

• Contribution from L. Pertoldi

• Build fix based on skbuild and Cmake

• Not quite ready yet

Packaging still a pain in Python with 
extensions



Soon

• Tetrahedralization of meshes (for 
tracking and Multiphysics)

• USD export for high quality rendering 
and VR/AR

• Improved VTK visualization 
(significant speed improvements)

• Mesh hashing for geometry 
comparison (check final solid mesh 
geometry and not details of CSG tree)

• Command line interface for simple 
operations

Longer term

• Conversion of CAD to G4 primitives

• Lots of progress in this area in the graphics 
community

• Direct STEP/IGES output

• More use of CGAL 

• Alpha wrap for meshes 

• New coplanar algorithms (detect geometry close 
of geometry safety limits)

• Paraview module to directly load 
geometry (some discussions with 
Kitware)

New features



• Pyg4ometry has reached a high level 
of maturity

• Agnostic system : not for any 
community (medical, space, HEP etc)

• Pyg4ometry is routinely used in 
multiple experiments

• Found a home in accelerator 
applications of Geant4

• Developments are now incremental, 
but packaging is still a major problem

• Improved material properties (M. 
Hubert)

• Being used in the wild by various 
experiments

• Packaging will change this significantly

• Better packaging and building on the 
way (L. Pertoldi)

• Pypi packages for most platforms 
coming soon

• Also docker images are available (but 
need updating)

• Health warning : Not for massive 
geometry. Need lots of optimization

Summary and conclusions



Pull requests merged from

Thomas Latham 

Luigi Pertoldi

Manuel Hubert 

Former group members 

Stuart Walker (DESY)

Andrey Abramov (CERN)

Users with feedback, changes and PRs 

Cedric Hernalsteens

Elliot Ramoisiaux

Robin Tesse

Eustache Gnacadja

Acknowledgements


