
Special Mesh Rendering
John Allison and Evgueni Tcherniaev

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 0

What is a “G4Mesh”?

• In many applications, especially medical applications, the material world is represented in
part by a G4PVParameterised (including G4VNestedParameterisation).

• Each element has a different location (and size?) and may be programmed to have a
different material and colour.

• On request
/vis/viewer/set/specialMeshRendering

the vis manager asks G4PhysicalVolumeModel to look out for candidates. If a
volume’s descendents (up to 3 deep) is a G4PVParameterised, the volume is
declared a “container” and wrapped in a special class, G4Mesh, and passed to the scene
handler for ”special rendering”.

• G4Mesh anticipates 5 types (see inset) but only 3—rectangular(2 types) and
tetrahedron—are programmed at present.

• The user may ask for specific meshes:
/vis/viewer/set/specialMeshVolumes <container-name>

• There are two options:
/vis/viewer/set/specialMeshRenderingOption [dots|surfaces]

• The above commands must come before
/vis/drawVolume

class G4Mesh {
public:
enum MeshType {

invalid
, rectangle
, nested3DRectangular
, cylinder
, sphere
, tetrahedron

};

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 1

Special mesh rendering

• When a mesh is asked for and is found, instead of descending the
geometry tree, G4PhysicalVolumeModel passes the whole
mesh to the vis driver.
• The driver may (optionally) implement AddCompound(const G4Mesh&)

• Otherwise the base class default is invoked, drawing just the “container”.

• The following drivers invoke “standard special mesh rendering”:
• OpenGL, ToolsSG, Qt3D and OpenInventor
void G4OpenGLSceneHandler::AddCompound(const G4Mesh& mesh) {

StandardSpecialMeshRendering(mesh);

}

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 2

Standard special mesh rendering

• 4 programmed possibilities:
• Draw[3DRect|Tet]MeshAs[Dots|Surfaces]

• Each involves a descent into the geometry sub-tree of
the mesh, picking up the coordinates of the individual
elements of the mesh, with their material and colour.
• For “dots”, each element gets a random point within it and a
std::multimap is filled by material (with its colour).
• Exploits fast rendering of points (G4Polymarker::dots) in

OpenGL.

• For “surfaces”, each element is accumulated and used to
construct a G4Polyhedron with G4PolyhedronBoxMesh
or G4PolyhedronTetMesh as appropriate.
• This is where the magic happens. Shared surfaces are removed by a

very clever fast algorithm (Evgueni Tchernaiev) leaving a tractable
G4Polyhedron of the outer faces.

void G4VSceneHandler::StandardSpecialMeshRendering(const G4Mesh& mesh)
// Standard way of special mesh rendering.
// MySceneHandler::AddCompound(const G4Mesh& mesh) may use this if
// appropriate or implement its own special mesh rendereing.
{
G4bool implemented = false;
switch (mesh.GetMeshType()) {
case G4Mesh::rectangle: [[fallthrough]];
case G4Mesh::nested3DRectangular:
switch (fpViewer->GetViewParameters().GetSpecialMeshRenderingOption()) {
case G4ViewParameters::meshAsDots:
Draw3DRectMeshAsDots(mesh); // Rectangular 3-deep mesh as dots
implemented = true;
break;

case G4ViewParameters::meshAsSurfaces:
Draw3DRectMeshAsSurfaces(mesh); // Rectangular 3-deep mesh as surfaces
implemented = true;
break;

}
break;

case G4Mesh::tetrahedron:
switch (fpViewer->GetViewParameters().GetSpecialMeshRenderingOption()) {
case G4ViewParameters::meshAsDots:
DrawTetMeshAsDots(mesh); // Tetrahedron mesh as dots
implemented = true;
break;

case G4ViewParameters::meshAsSurfaces:
DrawTetMeshAsSurfaces(mesh); // Tetrahedron mesh as surfaces
implemented = true;
break;

}
break;

case G4Mesh::cylinder: [[fallthrough]];
case G4Mesh::sphere: [[fallthrough]];
case G4Mesh::invalid: break;

}
if (!implemented) {
G4VSceneHandler::AddCompound(mesh); // Base class function - just print warning

}
return;

}

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 3

Generating Random Point in Tetrahedron
• Steps to generate a random point inside a tetrahedron defined by four vertices (v0,v1,v2,v3):

- Generation of three random values: s, t, u. The point corresponding to these values is inside
of a cube with the sides equal to 1

- The cube can be subdivided in six equal tetrahedra. Appling a transformation that places the
point into the tetrahedron at the origin

- Calculation of the position in the original tetrahedron: p = v0(1- s - t - u) + v1 s + v2 t + v3 u

• Detailed explanation of the algorithm:
C.Rocchini and P.Cignoni, Generating Random Points in a Tetrahedron, Journal of Graphics Tools,
Volume 5, Issue 4 (2000)

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 4

http://vcg.isti.cnr.it/publications/papers/rndtetra_a.pdf

Constructing Polyhedron from rectangular mesh

• G4PolyhedronBoxMesh(sx, sy, sz, positions)

sx, sy, sz – voxel dimensions

positions – array of voxels centers

• The construction of a polyhedron is fast, it takes O(N)
time, and is done in two steps:

- Step one: Construction of a 3D grid surrounding the mesh,
the grid cells corresponding to the mesh voxels are
marked (grey cells on the sketch image)

- Step two: Only cell faces that do not have marked
neighboring cells are included into the resulting
polyhedron (blue edges on the sketch)

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 5

ICRP110 Performance

• ICRP110 is an existing Geant4 advanced example:
• From ICRP, 2009. Adult Reference Computational Phantoms. ICRP Publication

110. Ann. ICRP 39 (2).

• Contains a G4VNestedParameterisation of 299x137x348 (14,255,124)
boxes:
• 3,885,291 of which are “visible” representing 52 organs

• one dot per box are sorted into 52 G4Polymarker objects of different materials (and
colour)

• These 3,885,291 dots are rendered at about 5 fps on MacBook Pro (Retina,
Mid 2012), 2.7 GHz Quad-Core Intel Core i7, 16 GB

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 6

https://www.icrp.org/publication.asp?id=icrp%20publication%20110
https://drive.google.com/file/d/10mCYpA2Sg0iabYokjVl1RvLKHhsGPeFZ/view?usp=sharing

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 7

Constructing Polyhedron from tetrahedron mesh

• G4PolyhedronTetMesh(vertices)

vertices – tetrahedra, four vertices per tetrahedron

• Elimination of internal (shared) faces is done in two steps using a technique
similar to “hash map”. Objects are sorted into lists, the index of the list for an
object is calculated by applying a hash function to this object
• Step one: Identification of coincident vertices. Below is a C++ code to generate a hash value

for a vertex:
auto index = std::hash(v.x());

index ^= std::hash(v.y());

index ^= std::hash(v.z());

index %= n_of_lists;

• Step two: Identification of internal/external faces and selecting the external ones. The faces
are sorted into lists using smallest index among the three vertex indices that define the face

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 8

ICRP145 Performance
• ICRP145 is a new advanced example, presented in the Examples Session:

• From ICRP, 2020. Adult mesh-type reference computational phantoms. ICRP
Publication 145. Ann. ICRP 49(3)
C.H. Kim, Y.S. Yeom, N. Petoussi-Henss, M. Zankl, W.E. Bolch, C. Lee, C. Choi, T.T.
Nguyen, K. Eckerman, H.S. Kim, M.C. Han, R. Qiu, B.S. Chung, H. Han, B. Shin

• Contains a one-level G4PVParameterised of 8,233,413 G4Tets (32,933,652
faces):
• The 8,233,413 G4Tets represent 187 organs
• By eliminating internal shared faces, tetrahedra are converted to 187 G4Polyhedron

objects by material (and colour) with only 4,807,770 faces (14% of original number of faces)
• Timings:

• Geometry construction: 20 s

• Physics tables: 90 s
• Closing geometry: 20 s

• Creating graphical database: 20 s

• Rendering: 2 fps on MacBook Pro (Retina, Mid 2012), 2.7 GHz Quad-Core Intel Core i7, 16 GB

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 9

http://icrp.org/publication.asp?id=ICRP%20Publication%20145
https://drive.google.com/file/d/1VXcHmvB-45OpFd1g0dCiwbb53uCfsgIf/view?usp=sharing

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 10

That’s it

Thankyou

John Allison, Evgueni Tcherniaev, G4 Collaboration Meeting,
Rennes 2022

27 September 2022 11

…except for documentation !!! 😧

