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What is a “G4Mesh”?

• In many applications, especially medical applications, the material world is represented in 
part by a G4PVParameterised (including G4VNestedParameterisation).

• Each element has a different location (and size?) and may be programmed to have a 
different material and colour.

• On request
/vis/viewer/set/specialMeshRendering

the vis manager asks G4PhysicalVolumeModel to look out for candidates. If a 
volume’s descendents (up to 3 deep) is a G4PVParameterised, the volume is 
declared a “container” and wrapped in a special class, G4Mesh, and passed to the scene 
handler for ”special rendering”.

• G4Mesh anticipates 5 types (see inset) but only 3—rectangular(2 types) and 
tetrahedron—are programmed at present.

• The user may ask for specific meshes:
/vis/viewer/set/specialMeshVolumes <container-name>

• There are two options:
/vis/viewer/set/specialMeshRenderingOption [dots|surfaces]

• The above commands must come before
/vis/drawVolume

class G4Mesh {
public:
enum MeshType {

invalid
, rectangle
, nested3DRectangular
, cylinder
, sphere
, tetrahedron

};
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Special mesh rendering

• When a mesh is asked for and is found, instead of descending the 
geometry tree, G4PhysicalVolumeModel passes the whole 
mesh to the vis driver.
• The driver may (optionally) implement AddCompound(const G4Mesh&)

• Otherwise the base class default is invoked, drawing just the “container”.

• The following drivers invoke “standard special mesh rendering”:
• OpenGL, ToolsSG, Qt3D and OpenInventor
void G4OpenGLSceneHandler::AddCompound(const G4Mesh& mesh) {

StandardSpecialMeshRendering(mesh);

}
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Standard special mesh rendering

• 4 programmed possibilities:
• Draw[3DRect|Tet]MeshAs[Dots|Surfaces]

• Each involves a descent into the geometry sub-tree of 
the mesh, picking up the coordinates of the individual 
elements of the mesh, with their material and colour.
• For “dots”, each element gets a random point within it and a 
std::multimap is filled by material (with its colour).
• Exploits fast rendering of points (G4Polymarker::dots) in 

OpenGL.

• For “surfaces”, each element is accumulated and used to 
construct a G4Polyhedron with G4PolyhedronBoxMesh
or G4PolyhedronTetMesh as appropriate.
• This is where the magic happens. Shared surfaces are removed by a 

very clever fast algorithm (Evgueni Tchernaiev) leaving a tractable 
G4Polyhedron of the outer faces.

void G4VSceneHandler::StandardSpecialMeshRendering(const G4Mesh& mesh)
// Standard way of special mesh rendering.
// MySceneHandler::AddCompound(const G4Mesh& mesh) may use this if
// appropriate or implement its own special mesh rendereing.
{
G4bool implemented = false;
switch (mesh.GetMeshType()) {
case G4Mesh::rectangle: [[fallthrough]];
case G4Mesh::nested3DRectangular:
switch (fpViewer->GetViewParameters().GetSpecialMeshRenderingOption()) {
case G4ViewParameters::meshAsDots:
Draw3DRectMeshAsDots(mesh);  // Rectangular 3-deep mesh as dots
implemented = true;
break;

case G4ViewParameters::meshAsSurfaces:
Draw3DRectMeshAsSurfaces(mesh);  // Rectangular 3-deep mesh as surfaces
implemented = true;
break;

}
break;

case G4Mesh::tetrahedron:
switch (fpViewer->GetViewParameters().GetSpecialMeshRenderingOption()) {
case G4ViewParameters::meshAsDots:
DrawTetMeshAsDots(mesh);  // Tetrahedron mesh as dots
implemented = true;
break;

case G4ViewParameters::meshAsSurfaces:
DrawTetMeshAsSurfaces(mesh);  // Tetrahedron mesh as surfaces
implemented = true;
break;

}
break;

case G4Mesh::cylinder: [[fallthrough]];
case G4Mesh::sphere: [[fallthrough]];
case G4Mesh::invalid: break;

}
if (!implemented) {
G4VSceneHandler::AddCompound(mesh);  // Base class function - just print warning

}
return;

}
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Generating Random Point in Tetrahedron
• Steps to generate a random point inside a tetrahedron defined by four vertices (v0,v1,v2,v3):

- Generation of three random values: s, t, u. The point corresponding to these values is inside 
of a cube with the sides equal to 1 

- The cube can be subdivided in six equal tetrahedra. Appling a transformation that places the 
point into the tetrahedron at the origin

- Calculation of the position in the original tetrahedron:  p = v0(1- s - t - u) + v1 s + v2 t + v3 u

• Detailed explanation of the algorithm:
C.Rocchini and P.Cignoni, Generating Random Points in a Tetrahedron, Journal of Graphics Tools, 
Volume 5, Issue 4 (2000) 
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http://vcg.isti.cnr.it/publications/papers/rndtetra_a.pdf


Constructing Polyhedron from rectangular mesh

• G4PolyhedronBoxMesh(sx, sy, sz, positions)

sx, sy, sz – voxel dimensions

positions – array of voxels centers

• The construction of a polyhedron is fast, it takes O(N) 
time, and is done in two steps:

- Step one: Construction of a 3D grid surrounding the mesh, 
the grid cells corresponding to the mesh voxels are 
marked (grey cells on the sketch image)

- Step two: Only cell faces that do not have marked 
neighboring cells are included into the resulting 
polyhedron (blue edges on the sketch)
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ICRP110 Performance

• ICRP110 is an existing Geant4 advanced example:
• From ICRP, 2009. Adult Reference Computational Phantoms. ICRP Publication 

110. Ann. ICRP 39 (2).

• Contains a G4VNestedParameterisation of 299x137x348 (14,255,124) 
boxes:
• 3,885,291 of which are “visible” representing 52 organs

• one dot per box are sorted into 52 G4Polymarker objects of different materials (and 
colour)

• These 3,885,291 dots are rendered at about 5 fps on MacBook Pro (Retina, 
Mid 2012), 2.7 GHz Quad-Core Intel Core i7, 16 GB
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https://www.icrp.org/publication.asp?id=icrp%20publication%20110
https://drive.google.com/file/d/10mCYpA2Sg0iabYokjVl1RvLKHhsGPeFZ/view?usp=sharing
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Constructing Polyhedron from tetrahedron mesh

• G4PolyhedronTetMesh(vertices)

vertices – tetrahedra, four vertices per tetrahedron

• Elimination of internal (shared) faces is done in two steps using a technique 
similar to “hash map”. Objects are sorted into lists, the index of the list for an 
object is calculated by applying a hash function to this object 
• Step one: Identification of coincident vertices. Below is a C++ code to generate a hash value  

for a vertex:
auto index = std::hash(v.x());   

index ^= std::hash(v.y());

index ^= std::hash(v.z()); 

index %= n_of_lists;

• Step two: Identification of internal/external faces and selecting the external ones. The faces 
are sorted into lists using smallest index among the three vertex indices that define the face  
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ICRP145 Performance
• ICRP145 is a new advanced example, presented in the Examples Session:

• From ICRP, 2020. Adult mesh-type reference computational phantoms. ICRP 
Publication 145. Ann. ICRP 49(3)
C.H. Kim, Y.S. Yeom, N. Petoussi-Henss, M. Zankl, W.E. Bolch, C. Lee, C. Choi, T.T. 
Nguyen, K. Eckerman, H.S. Kim, M.C. Han, R. Qiu, B.S. Chung, H. Han, B. Shin

• Contains a one-level G4PVParameterised of 8,233,413 G4Tets (32,933,652 
faces):
• The 8,233,413 G4Tets represent 187 organs
• By eliminating internal shared faces, tetrahedra are converted to 187 G4Polyhedron

objects by material (and colour) with only 4,807,770 faces (14% of original number of faces)
• Timings:

• Geometry construction: 20 s

• Physics tables: 90 s
• Closing geometry: 20 s

• Creating graphical database: 20 s

• Rendering: 2 fps on MacBook Pro (Retina, Mid 2012), 2.7 GHz Quad-Core Intel Core i7, 16 GB
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http://icrp.org/publication.asp?id=ICRP%20Publication%20145
https://drive.google.com/file/d/1VXcHmvB-45OpFd1g0dCiwbb53uCfsgIf/view?usp=sharing
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That’s it

Thankyou
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…except for documentation !!! 😧


