

EP R&D WP3.1 – Noble Liquid Calorimetry

M. Aleksa for EP R&D WP3.1

Material used:

- Monthly Noble-Liquid Calorimetry meetings <u>https://indico.cern.ch/category/8922/</u>
- GranuLAr Workshop https://indico.ijclab.in2p3.fr/event/7664/timetable/#20220406
- <u>Seminar talk by B. François</u> at the EP R&D Seminar

Introduction

Noble Liquid Calorimetry is a key HEP technology

- Successful operation in D0, H1, NA48/62, ATLAS, ...
- Proposed for several future accelerator facilities
 - · FCC-hh, LHeC, FCC-ee, ...
- Extreme radiation hardness, good energy/timing resolution, long term stability, linear response, uniformity, ...

Excellent jet energy resolution is achieved with **Particle Flow** reconstruction techniques

Requires imaging calorimeters → highly granular (+ small Moliere radius)

R&D Goal: design a Noble Liquid calorimeter with imaging capability

- . \rightarrow High granularity
- Challenging signal extraction!

GranuLAr Workshop in Paris (April 2022)

https://indico.ijclab.in2p3.fr/event/7664/

- First ever workshop on noble liquid calorimeter R&D for FCC
 - 26 participants from 9 institutes
 - Meet for the first time in person after 2 years of Zoom meetings
 - Status of the ongoing R&D
 - Experience sharing from long-term ATLAS LAr experts
 - Discussion of our mid-term goals
 - Towards a detector concept
 - Towards a prototype going to testbeam

How to Achieve High Granularity?

Realize electrodes as multi-layer PCBs (1.2mm thick), 7 layers

- HV and read-out
- Signal traces (width w_t) in dedicated signal layer connected with vias to the signal pads
- Traces shielded by ground-shields (width w_s) forming $50\Omega - 80\Omega$ transmission lines
- \rightarrow capacitance between shields and signal pads C_s will add to the detector capacitance via the gap C_a
- $\rightarrow C_{cell} = C_s + C_d \approx 25 300 \text{pF}$
- The higher the granularity the more shields are necessary $\rightarrow C_s$ increases, C_d decreases (smaller cells)

HV

Signal Pad

(thickness \sim 275 micr.)

Geometry for FCC-ee Experiment

Geometry for FCC-ee ECAL barrel being optimized:

- No Pb/W in the first compartment = presampler (PS) → used to compensate for lost energy upstream
- 1536 absorbers in 2π , flat, no step-increase with r.
- 11 longitudinal compartments
- $r_i=2160$ mm, $r_o=2560$ mm, inclination of absorbers at r_i is $\alpha_i=50.381^\circ$ (α_1 depends on r_i and r_o to align cells in ϕ)
 - Radii and other parameters being adjusted to available space
- Cells line up in projective towers in θ and φ, add 2 double gaps in the PS and strips (1st and 2nd longitudinal compartment) and 4 double gaps in other layers –Strips (2nd comp.): Δφ x Δθ = 8.2mrad x 2.5mrad = 17.8mm x 5.4mm
 Other compartments: Δφ x Δθ = 16.4mrad x 10mrad = 36mm x 22mm|_{r=2205mm (3rd comp.)}
- Readout with 7-layer PCB (FR4), 1.2mm thick
- With LAr/Pb this leads to ~20.5 X_0 , $f_{sampl} \approx 1/6$.
- Studies ongoing with other absorbers (Pb/W) and LAr/LKr → leading also to other detector dimensions

Equivalent geometry for the ECAL endcaps

 Turbine wheel like with radially inclined straight absorbers or parallel plates perpendicular to beam

HCAL endcaps with parallel plates perpendicular to the beam

Detector Concept 1a

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, outside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

First Electrode Prototype

- The first electrode PCB prototype has been designed and produced!
 - Production at the CERN PCB Design office
- Scale 1:1 in the radial direction, 16 theta towers with different scenarios (number of shields, shield width, extraction scheme, ...)
- Will be used to validate the concept and cross-check the simulations with several benchmarks

Brieuc François

EP R&D Days, June 2022 – Martin Aleksa (CERN)

0 3000

0.0500

0.0750 0.0750

0.3000

Challenges: Resolution and Noise

- **EM resolution** with sampling term of 8 to 9%
 - Studies with different geometries and different absorber materials and active materials
- Noise of < 1.5 MeV per cell for warm electronics and transmission lines of R₀ = 100 Ω and τ = 200 ns (C_d ≤ 250 pF)
 - \rightarrow MIP S/N > 5 reached for all layers

Challenges: Crosstalk

- Study signal attenuation and x-talk with Finite Element Method (ANSYS HFSS)
 - PCB ports Scattering parameter (S-matrix) → PSpice equivalent circuits → ANSYS Circuit
- X-talk current has a negative component → drastically lower x-talk values reached with signal integration
 - Without signal shaping:
 - Peak-to-peak x-talk current values for neighbouring cell (7→ 6): 12 % without shield, 6 % with 1 shield, 2 % with two shields
 - With signal shaping CR-RC² shaper:
 - Cross-talk of < 1% for shaping times $\tau \ge 100 \text{ ns}$

Brieuc François

June 20, 2022

High Density Feedthroughs

- New generation of noble-liquid calorimeters 10-15 times more granular than ATLAS → more channels to extract from the cryostat (e.g. ECAL barrel ~2 M)
- If the electronics sits outside of the cryostat (warm electronics), one needs high density feedthroughs
- \rightarrow Design of innovative connector-less feedthroughs
 - High density flange
 - Higher area dedicated to signal extraction
 - → 20 000 wires per feedthrough
- Reduced size samples development
 - Testing different 3D-printed epoxy resins as structures with slits allowing the passage of cables
 - Leak and pressure (3.5 bar) tests at 300 and 77 K
 - Already identified a solution surviving several thermal cycles (G10 structure with slits + indium seal + Epo-Tek glued Kapton strip cables)
- Next step
 - Full flange design

Maria Asuncion Barba Higueras

Reminder – FCC-hh Electromagnetic Calorimeter (ECAL)

- Radiation hard cold electronics could be an alternative option
- Required energy resolution achieved
 - Sampling term ≤ 10%/VĒ, only ≈300 MeV electronics noise despite multilayer electrodes
 - Impact of in-time pile-up at $\langle \mu \rangle$ = 1000 of \approx 1.3GeV pile-up noise (no in-time pile-up suppression)
 - →Efficient in-time pile-up suppression will be crucial (using the tracker and timing information)
- Since 2019 adapting this calorimeter to FCC-ee

EP R&D Days, June 2022 – Martin Aleksa (CERN)

1 1.05 1.1 1.15

2 σ

 1σ

1.2

 $k_{\lambda} = \lambda_{obs} / \lambda_{SM}$

δλ/λ ≈7%

0.8 0.85 0.9 0.95

Detector Concept 1

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, inside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

Detector Concept 1a

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, outside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

Detector Concept 2

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Barrel: Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
 - EndCap: Noble liquid + Copper
 + iron for the yoke
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

Detector Concept 3

- Vertex Detector:
 MAPS, DMAPS
- Silicon Tracker (ALICE 3 like)
- Aerogel RICH Cellular detector (ARC) for PID
- Silicon Wrapper:
 MAPS, DMAPS
- Solenoid B=2T, sharing cryostat with ÉCAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

FCC-ee Physics Programme

FCC-ee Detector Requirements

June 20, 2022

Requirements for Calorimetry in FCC-ee

• Energy range of particles:

- All particles \leq 182.5 GeV
 - \rightarrow 22X₀ and 5-7 λ sufficient
- Measure particles down to < 300 MeV (e.g. photons)
 - \rightarrow Little material in front of the calorimeter
 - \rightarrow Low noise (noise term dominant at small energies, b \ll 300 MeV)!
- Jet energy and angular resolutions via Particle Flow (PF) algorithm
 - Jet resolution must be excellent (~ 30%/VE) to separate W and Z decays
- **Position resolution of photons /** π^0 **rejection:** $\sigma_x = \sigma_y = (6 \text{ GeV/E} \oplus 2) \text{ mm Particle ID:}$
 - τ decays with collimated final states, separate different decay modes with minimal overlap (e.g. π^0 close to π^\pm)
- \rightarrow Fine segmentation for PF algorithm and powerful γ/π^0 separation and measurement
- 10%/VE sufficient for most of the FCC-ee physics programme, however, for heavy flavour programme, superior ECAL resolution of a few % could be an advantage (see e.g. <u>talk by R. Aleksan</u>)
- On top of that: minimizing the systematic error (see next slide)

The Challenge – Minimizing the Systematic Error

The FCC Physics Landscape

	Observable	Present			FCC-ee	FCC-ee
from 1 a 11 and 2		value	\pm	error	(statistical)	(systematic)
	$m_{\rm Z}~({\rm keV/c^2})$	91 186 700	±	2200	5	100
my and . my	$\Gamma_{\rm Z} \; ({\rm keV})$	2 495 200	±	2300	8	100
and a quantum	$\mathrm{R}^{\mathrm{Z}}_{\ell}$ (×10 ³)	20767	\pm	25	0.06	1
leap in our	$\alpha_{\rm c}({\rm m_{Z}}) (\times 10^4)$	1196	+	30	0.1	1.6
understanding of	$R_{\rm b} (\times 10^6)$	216 290	±	660	0.3	<60
electroweak	$\sigma_{ m had}^{0}~(imes 10^{3})~({ m nb})$	41 541	\pm	37	0.1	4
physics due to	$N_{\nu}(\times 10^3)$	2991	\pm	7	0.005	1
the Tera-Z	$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231 480	±	160	3	2–5
programme!	$1/\alpha_{\rm QED}({\rm m_Z})(imes 10^3) \ {\rm A_{FB}^{b,0}}\ (imes 10^4)$	128 952 992	± ±	14 16	4 0.02	Small <1
	$\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}\;(\times 10^4)$	1498	±	49	0.15	<2
mee 1 (D. Ide	$m_{\rm W}~(keV/c^2)$	803 500	±	15 000	600	300

Talk by M. Mccullough on Monday at the FCC-Week (link)

- FCC-ee EWPO measurements with unprecedented statistical precision
 - e.g. 10¹² hadronic Z decays at Z-pole
 - Statistical precision for EWPOs measured at the Zpole is typically 500 times smaller than the current uncertainties
 - \rightarrow Extremely well controlled systematic error
 - \rightarrow High stability, uniformity and linearity
- \rightarrow Highly granular noble liquid calorimetry is an excellent candidate!!

Example – Stability of ATLAS LAr Energy Scale

- Noble-liquid calorimetry: High intrinsic stability (see gain and pedestal stability)
 - Pedestal stability < 100 keV (!)
 - Gain stability 2.6x10⁻⁴
- These parameters are monitored in daily calibration runs → constants are updated when necessary (about once a month)
- → Leading to high stability of the energy scale of 2x10⁻⁴, monitored by invariant mass mee (Z→ee events) and E/p

FCC Calorimetry

Tile barre

Tile extended barrel

- Good intrinsic energy resolution
- Radiation hardness
- High stability
- Linearity and uniformity
- Easy to calibrate

- High granularity
 → Pile-up rejection
 - \rightarrow Particle flow
 - \rightarrow 3D/4D/5D imaging

FCC-hh Calorimetry studies have been published at https://arxiv.org/abs/1912.09962

Granularity – What are the Limits in ATLAS LAr?

- In the ATLAS LAr calorimeter electrodes have 3 layers that are glued together (~275µm thick)
 - 2 HV layers on the outside
 - 1 signal layer in the middle
- → All cells have to be connected
 with fine signal traces (2-3mm)
 to the edges of the electrodes
 - Front layer read at inner radius
 - Middle and back layer read at outer radius
- → limits lateral and longitudinal granularity
- \rightarrow maximum 3 long. layers

June 20, 2022

FCC-hh Hadronic Calorimeter Barrel (HCAL)

Barrel HCAL:

- ATLAS type
 - Scintillator tiles steel
- Higher granularity than ATLAS
 - Δη x Δφ = 0.025 x 0.025
 - 10 instead of 3 longitudinal layers
 - Steel -> stainless Steel absorber (Calorimeters inside magnetic field)
- SiPM readout → faster, less noise, less space
- Total of 0.3M channels

Combined pion resolution (w/o tracker!):

- Simple calibration: 44%/VĒ to 48%/VĒ
- Deep neural network (DNN): 37%/VĒ
 Jet resolution:
- Jet reconstruction impossible without the tracker @ 4T \rightarrow particle flow.

e/h ratio very close to 1 → achieved using steel absorbers and lead spacers (high Z material)

Detector Concept 1 Implemented in FCC-SW

- Detector Concept 1 with nobleliquid ECAL and TileCal HCAL has been implemented into key4hep (J. Faltova <u>link</u>)
- Ready for plug-n-play e.g. simulations with drift chamber or Si tracker are possible ...
- Clustering can be used from FCChh calorimeter (sliding window, topo cluster), also plan to integrate CLUE algorithm (k4Clue, see talk by V. Volkl yesterday, <u>link</u>)
- Particle flow: Pandora being made available in key4hep via wrapper (k4pandora, see talk by V. Volkl yesterday, <u>link</u>)

Further Thoughts

- Presented first ideas of new detector concept using highly granular noble-liquid calorimeter
- Aimed to include **thin 2T solenoid** in the calorimeter cryostat.
 - Solenoid inside the calorimeter or between ECAL and HCAL
- Currently scintillator/iron HCAL, but option with ECAL and HCAL as noble liquid calorimeter possible
 - Weight! Might be challenging for cryostat mechanics
- The idea is to profit from detector developments for HL-LHC (LS3) and beyond (e.g. ALICE 3, LHCb Phase-2)
- Thanks to the modular structure of the FCC-SW different detector concepts can easily be simulated and its performance evaluated
 - A first geometry following the above concept has been implemented by Jana Faltova.
- This is a very new and very promising detector concept! Please come and join us!