Submissions and Designs in TPSCo ISC 65 nm

Gianluca On behalf of EP RnD WP1.2 Contributors

TPSCo ISC 65 nm CMOS Imaging 300 mm wafers + Stitching

Sensor Development Roadmap

Silicon submissions

MLR1 (Q4 2020)

Technology

20220620 EP RnD Day | WP1.2 | Submissions and Designs

EP R&D

MLR1 Submission

First submission in 65 nm CMOS Imaging, December 2020

- Learn technology features
- Characterize devices

Prototype circuits, blocks and pixel structures

 $1.5 \times 1.5 \text{ mm}^2 \text{ or } 3 \times 1.5 \text{ mm}^2 \text{ test chips}$

Transistor Test Structures

5 chips with many variants of single transistors

Direct I-V characterization with probe system

Aim

Characterize and verify device response and electrical characteristics with lonizing Irradiation

Measure characteristics under different operating conditions, e.g. *after irradiation* and when *reverse biasing* bodies of transistors

R&D

Analog Blocks and VCO

Overview

- 1. Bandgap Reference Prototype, Diode and PNP
- 2. Bandgap Reference Prototype, DTMOS and diode gated
- 3. Temperature Sensors Prototypes
- 4. Voltage Controlled Oscillators Prototypes
- 5. Amplifier prototype circuits

Aim

Functional and irradiation testing of peripheral analog circuits

Silicon proven Bandgap Reference used in stitched prototypes of ER1 Silicon proven VCO used in 5 GHz PLL prototype in ER1 serializer prototypes TID tests > 300 Mrad

Ring Oscillators and I/Os

Ring Oscillators

24 x 2 ring oscillators

Based on different std cells (Inv, Nand, Nor, DFF), different sizes, and two different thresholds

Aim: test the radiation tolerance of the digital standard cells

TID test >800 Mrad, 12%-15% frequency reduction

Differential I/Os

High Speed (2 Gb/s) Serial Line Driver Differential LVDS Receiver

Pixel Prototype Chips

APTS, DPTS, CE65

Variants of collection diodes Variants of Front-End

Front-End prototype

Charge Shaping Amplifier

Process Optimisation

Increase margins on sensing performance

Silicon proven pixels and DPTS front-end used as basis for stitched chip sensors in ER1

1.5 mm

APTS

EP R&D

4x4 pixel matrix 10, 15, 20, 25 μm pitches Pixel variants Direct analogue readout

DPTS

 32×32 pixels 15 µm pitch Asynchronous digital readout ToT information

CE65

64 × 32, 15 um pixels
48 × 32, 25 um pixels
Rolling shutter analog readout
3 pixel front-end architectures

Process modifications

Similar optimization as in 180nm Implant modifications needed even more in 65 nm for good charge collection

Charge collection speed

Charge sharing

R&D

EP

Executive Summary of MLR1 Test Results

All chips and pixel prototypes working

Some imperfections and much learning

Transistors Tests Structures

Working as expected and similar to other 65 nm Technology characterized for HEP

Many building blocks proven in silicon and tested after irradiation

Bandgap, DACs, Temperature sensor, VCO, I/Os, Front-ends

Pixel Prototypes

Wealth of results and detailed characterisation ongoing

Process and Sensor layout optimisation

Increased margins on sensor performance and radiation hardness Validated in TPSCo ISC 65 nm

Reverse Bias

Reduction of input capacitance

Mismatch between measurements and models when transistor bodies are reverse biased outside the nominal range

R&D

EP

Towards ER1 – Stitching Interlude

Design Reticle (typ. 2×3 cm)

ER1 Submission

Aim: learn and prove stitching

Two large *stitched* sensor chips (MOSS, MOST)

Different approaches for resilience to manufacturing faults

Small test and development chips

Pixel Prototypes Fast Serial Links

Technology and Support

New metal stack, new I/O libraries, new PDKs

Intense design effort shared by many groups

Chips for ER1 submission

		Lead to the second	# of test	
Chip	Purpose	Institutes	sites	
MOSS	Stitched sensor prototype. Develop stitching know-how	CERN, CCNU, INFN, IPHC,	-	DOING
	Focus on technology options, power distribution, signal routing, yield	NIKHEF, YONSEI		
	Stitched sensor prototype. Develop stitching know-how	NIKUEE IDUC Usidalbarg		
MOST	Study yield with high density layout parts and fine power segmentaton	CERN INEN	-	DOING
	Low power and transmission of timing information over long distance			
Н2М	MAPS prototype. Port hybrid pixel features to monolithic		1	DELIVERED
	Investigate MAPS and architectures in non-stitched sensor	CERN, DESY, IFAE		(ASSEMBLY AND SIGN-OFF)
CE65v2	Pixel development and optimization vehicle			
	Focus on optimizing pixels and front-end	IPHC	wuitipie	DELIVERED ()
SEU-1, SEU-2	Prototype with memories and flops		r	
	Measure SEE cross-sections (SEL, SEU)		Z	DELIVERED ()
LDO, Bandgap	On-chip LDO regulator and analog macro	NIKHEF	1	DELIVERED ()
PLL, Serializer	Prototype of 10 Gb/s high speed serial transmitter	NIKHEF	2	DELIVERED ()
PLL, Tx buffer	First blocks for 10 Gb/s high speed transmission	UKRI STFC (RAL)	1	DELIVERED ()
Pixel test DESY	Pixel sensor and front end prototype	DESY	2	DELIVERED ()
Pixel test SLAC	Pixel matrix prototype	SLAC	1	DELIVERED ()
APTS	Analog pixel test structure (re-submission)	CERN, CCNU, IPHC, YONSEI		DELIVERED ()
DPTS	Digital pixel test structure (re-submission)	CERN, CCNU, YONSEI		DELIVERED ()
TTS1-5	Transistor test structures (re-submission)	CERN, CCNU		DELIVERED ()

MOSS Monolithic Stitched Sensor Prototype

Primary Goals

Learn Stitching technique to make a particle detector

Interconnect power and signals on wafer scale chip

Learn about yield and DFM

Study power, leakage, spread, noise, speed

Repeated units abutting on short edges

Functionally independent

Stitching used to connect metal traces for **power distribution** and **long range on-chip interconnect busses for control and data readout**

MOSS layout snapshots

6.72 Mpixels

EP R&D

MOST chip

Investigate yield when local density is preserved

Global power domains over full chip (Digital/Analog) Power gating with high granularity to mitigate defects

Larger sensor bias achieved by higher power supply

PWELL tied to ground

Event-driven asynchronous readout

No global shutter/strobe

Immediate transmission of hit data over long distance to the periphery

4 CML outputs in the bottom endcap

MOST layout snapshots

Detail of the top periphery (biasing generation, slow control, test pulsing)

Detail of the pixel matrix

Detail of the bottom periphery core with the 4 CML outputs

Detail of the stitched backbone buffers

20220620 EP RnD Day | WP1.2 | Submissions and Designs

H2M Hybrid to Monolithic

3×1.5 mm² chip, 64x16 pixel array, 35 um pitch

Port a hybrid pixel architecture into monolithic process

Prototyping front-end, compact digital library, peripheral blocks, differential I/Os

H2M (Hybrid-to-Monolithic) design

- Development aims:
 - Digital-on-top design flow and methodology
- Design and testing of a compact digital cell library
- Porting a hybrid pixel architecture into a monolithic process
- Compare the system level behaviour with the hybrid embodiment
- Optimising interconnect and mechanical schemes to minimise the cost per unit area

EP

R&D

CE65v2 Pixel Chips

Versatile Pixel Exploratory Chip

Optimization of charge collection node For lab and beam tests

Variants of pixels pitch and geometry

15, 18, 22.5, 18_{hexsq}, 22.5_{hexsq}

Rolling Shutter Readout

Single Multiplexed Analog Output

1.5 mm

R&D

EP

5 shift registers containing **10624** Flip-Flops of each of the types:

Library	Cell
Tower 12T LVT	D Flip-Flops with Q Output Only
Tower 12T LVT	D Flip-Flops with Set and Clear
Tower 12T LVT	Multiplexed Scan D Flip-Flops with Q Output Only
CERN 8T LVT	D Flip-Flops with Q Output Only
CERN 8T LVT	D Flip-Flops with Set and Clear

- DIE Size: 1.5 mm x 1.5 mm
- Core Area: 990 um x 1368 um (1.354 mm2)
- 90 um Bonding pitch

PLL, LDO, Temp Sens, High Speed TX

R&D

EP

Dual mode 10 GHz PLL

CML driver

PRBS Generator, I2C interface block

all 🚟

CSA Front-End Prototypes

Front-End for H2M chip

Evolution of *MLR1 CSA prototype* Charge Shaping Amplifier, Krummenacher FB, Comparator, Threshold DAC

EP R&D

Front-End Prototype Chip

Analog CSA FE and 4×4 pixel matrices

Standard Cell Modification for DFM

Modification of the layout of 50 Standard Cells

Respect Design For Manufacturability, Yield Enhancement rules Mitigate the impact of manufacturing faults Cells to be used in MOSS and MOST stitched designs

Joint Effort RAL, IPHC, INFN, CERN

Function	Description	Cell name
TIE CELL	Tie cell	DFMTIEH
		DFMTIEL
ANTENNA	Antenna diode	DFMANT3
DECOUP	Decoupling	DFMFILLER9C
		DFMFILLER10C
		DFMFILLER20C
FILLER	Filler cell	DFMFILLER1
		DFMFILLER2
		DFMFILLER3
		DFMFILLER4
		DFMFILLER5
		DFMFILLER8
		DFMFILLER16
		DFMFILLER30
ENDCAP	End Cap cell	DFMGDMY

BUFFERS	Inverting Buffers	DFMINVD1
		DFMINVD2
		DFMINVD4
		DFMINVD8
BUFFERS	Non-Inverting Buffers	DFMBUFD1
		DFMBUFD2
DELAY BUFFERS	1X Delay	DFMDL01D1
	2X Delay	DFMDL02D1
CLOCK	Buffers	DFMCLKBUFD1
		DFMCLKBUFD16A
		DFMCLKBUFD4
		DFMCLKBUFD8
CLOCK	Inverters	DFMCLKINVD1
		DFMCLKINVD16A
		DFMCLKINVD2
		DFMCLKINVD4
		DFMCLKINVD8
CLOCK	2-Input NAND	DFMCLKNAND2D4
CLOCK-GATING	Latch Based Clock Gating Cells	DFMGCLRD4
GATES	Logic Functions	DFMAND2D1
		DFMAOI22D1
		DFMNAND2BD1
		DFMNAND2D1
		DFMNOR2BD1
		DFMNOR2D1
		DFMOAI22D1
		DFMOR2D1
		DFMXOR2D1
GATES	2-to-1 Multiplexers with Inverted Output	DFMMXI2D1
FLIP-FLOPS	D Flip-Flops with Q Output Only	DFMDFFHQD1
		DFMDFFHQD4
	D Flip-Flops with Clear and Q Output Only	DFMDFFRHQD1
		DFMDFFRHQD4
LATCHES	Latches with Active-High Enable	DFMLAHD1
		DFMLAHSD1

Description

R&D

EP

Cell nam

Summary

MLR1 submission

- Large variety of prototype circuits and pixel arrays
- Building blocks proven in silicon, being utilized in ER1 designs
- Post-irradiation tests
- Acknowledgement and credits to many designers and scientists working on the characterization

ER1 submission

- Smaller prototype chips completed
- Working to close designs of stitched sensors (MOSS/MOST)
- Internal full wafer GDS file assembly ongoing

Selection of MLR1 results in the following presentation by Magnus

R&D