EP R&D

EP R&D Days WP 1.1 Planar sensor characterisation 20.6.2022

Jakob Haimberger

Planar sensor project

- Goal: systematic study of timing in planar sensors as a function of irradiation and thickness up to 1x10¹⁷ n_{eq}/cm²
- N on p planar sensor test structure run done by ADVACAM
- Test structures were produced in the following thickness:
 - 50, 100, 200 and 300 μm
- Circular diodes to avoid edge effects
- Test structures:
 - Small diodes (3.14 mm² active area) for timing study due to lower capacitance
 - Big diodes (28.27 mm² active area) for study of radiation damage and benchmarking the simulation
 - **5x5 Pixel matrix** (0.003 mm² active area) for charge sharing study

Big Diode

5x5 Matrix

Small Diode

Measurements before irradiation

IV:

10⁰

Leakage Current [nA]

 10^{-3}

- Done at the SSD lab at CERN
- Breakdown earlier than expected (around 80V ٠ for all thicknesses)
- Breakdown occurs in guard ring ٠
- Current seem to flow away at low Voltages for ٠ thick sensors (reason still unknown)

50µm ADVACAM unirrad. at 24 °C with grounded Guardring

0

Probe Pad

Probe Guard Wire Bond Pad

Wire Bond Guard

10

20

 100μ m ADVACAM unirrad. at 24 °C with grounded Guardring

Measurements before irradiation

CV:

- Second depletion region at 12 V visible
- Same postion for all thickness
- Suspected to be lateral depletion of p-spray

SIMS:

- Secondary Ion Mass Spectroscopy (done at the Group d' Etude de la Matière Condense in Versailles to get exact doping profiles
- P-spray peak values measured at ~8e16

ADVACAM SIMS Test Structure

Simulation

- Breakdown due to high p-spray concentration leading to impact ionisation at the interface between p-spray and electrode implant
- Breakdown first visible in guard ring due to bigger interface region compared to pad
- Simulation confirmed p-spray concentration
- Leakage current behavior at low voltage hard to reproduce in simulation

Capacitance Simulation 1000Hz 50µm Pad to Backside

Simulation of breakdown at the guard ring edge

Irradiation Campaign

- Irradiation of samples with neutron and proton
- Neutron irradiation done at the Triger Reactor in Ljubljana already finished
- Proton irradiation on-going at IRRAD
- For each thickness two samples were irradiated per fluence point per test structure type

Fluence [n _{eq} /cm ^{2]}	Small Diodes	Big Diodes	5x5 Matrix
1x10 ¹⁵	8	8	8
8x10 ¹⁵	8	8	8
6x10 ¹⁶	8	8	8
1x10 ¹⁷	8	8	8

Sensors per irradiation point

First Big Diodes Results after Irradiation

- breakdown characteristics improved significantly after irradiation due to reduction in p-spray concentration
- Unstable region before 1000V suspected to originate from high field and resulting impact ionisation in the edge region of the pad:
 - Needs to be confirmed by simulation 20/06/2022

- 8x10¹⁵ seem to have the biggest stable region due to no impact ionisation in the p-spray pad implant interface and less bulk impact ionisation
- Increase in slope at fluences 6x10¹⁶ and 1x10¹⁷ due to impact ionisation in the bulk

IRRAD Setup

- New sample holder was designed for the Vortex box to allow perfect alignment of even the small structures with the beam
- Sensors are placed in 3D printed cards which can be inserted into module
- Setup consist of up to 5 modules each containing 14 Card slots
- Material Accura 25
 - 3D printable at the CERN Polymer Lab with 0.1 mm precession
 - Relative cheap compared to alternative
 - Low thermal expansion coefficient: 6mm retraction per m at -15°C

Proton Irradiation Timetable

All these calculation assume normal IRRAD beam time without any major downtimes!

Ongoing work

- Finishing the IV and CV characterisation of the neutron/proton irradiated sensors
- Simulating the irradiated sensors in TCAD
- Timing Measurements without tiggering on the DUT (lab setup)
- Timing measurement using the test beam setup(see Vangelis presentation)

Testbeam setup

Lab setup

Backup

List of proton/neutron irradiated sensors

Fluence [n _{eq} /cm²]	Thickness [µm]	Big Diodes	Small Diodes	5x5 Matrix
1x10 ¹⁵	50	2	2	2
8x10 ¹⁵	50	2	2	2
6x10 ¹⁶	50	2	2	2
1x10 ¹⁷	50	2	2	2
1x10 ¹⁵	100	2	2	2
8x10 ¹⁵	100	2	2	2
6x10 ¹⁶	100	2	2	2
1x10 ¹⁷	100	2	2	2
1x10 ¹⁵	200	2	2	2
8x10 ¹⁵	200	2	2	2
6x10 ¹⁶	200	2	2	2
1x10 ¹⁷	200	2	2	2
1x10 ¹⁵	300	2	2	2
8x10 ¹⁵	300	2	2	2
6x10 ¹⁶	300	2	2	2
1x10 ¹⁷	300	2	2	2