

The Silicon Electron Multiplier Sensor

Victor Coco¹, Evangelos Leonidas Gkougkousis¹, Marius Mæhlum Halvorsen^{1,2}, Lucia Romano^{3, 4, 5}

¹CERN, ²University of Oslo, ³Paul Scherrer Institute, ⁴ETH Zürich, ⁵University of Catania

The Silicon Electron Multiplier Sensor

- Make a radiation hard sensor with good timing capabilities
 - Avoid doping dependent gain regions
 - Approach:
 - Implement additional electrodes in sensor substrate to create high electric field regions to promote charge multiplication
- Paper in review with NIM-A
 - preprint on Arxiv: <u>https://arxiv.org/abs/2203.01036</u>
- Demonstrator productions
 - Metal assisted chemical etching
 - With PSI
 - Deep reactive ion etching
 - With CNM

EP-R&D Days, Geneva, June 20th, 2022

Fabrication: Metal Assisted Chemical Etching

- On-going fabrication at PSI
- Process developed at PSI by L. Romano^{1,2}.
 - High aspect ratio grating fabrication for X-ray optics
 - [L. Romano et al; Nanoscale Horizons 5(5) (2020) 869-879]
- Metallic pattern used as etching catalyst for HF vapor.
- Etching catalyst is also used as a multiplication electrode
 - Suitable for single electrode geometries
- Process not yet applied on active media

¹ETH Zurich, ²Paul Scherrer Institute

Process flow overview

EP-R&D Days, Geneva, June 20th, 2022 Marius Mæhlum Halvorsen | The Silicon Electron Multiplier

Process optimisation, Coating and exposure

- Optimise different photoresists
- Pattern
 - Hexagonal grid, circle radius of 500– 600nm, pitch of 1.5µm,
- Direct Write Laser system
 - DWL66+ from Heidelberg Instruments
 - HiRes Write mode, can write features

>0.3µm

Platinum evaporation and lift-off

- E-beam evaporator
 - Pt deposition
- Lift-off to remove excess photoresist and metal
- Dewetting to create nano pores

EP-R&D Days, Geneva, June 20th, 2022

- On-going optimisation of etching parameters
 - Temperature
 - Time
 - Distance from HF-liquid interface

Remaining processing steps¹

864.8 nm = 6.126 um Mag = WD = 3.4 mm Stage at T = 5.0 ° Tilt Corrn. = Off Stage at X = 68.926 mm Date :11 Apr 2022 2 um EHT = 5.00 M/Time :15:07:01 Stage at Y = 68.446 mm InLens File Name = s1805 ME CHIPID9 12.ipc M M Halvorse

- Trench filling
- Contact mentalisation

Upcoming steps

High resistivity wafer procured from CNM

Process optimisation

- Etch rate comparison

Test several patterns

- Pad-, pixel- and strip-like geometries

First production to be completed after summer

-

-

-

Fabrication using deep reactive ion etching

- Project in cooperation with CNM.
- Awarded AIDA innova blue sky R&D grant for a demonstrator production
- Project has started
 - First design proposal beginning of July
 - Refining of simulations
 - Post-doc starts this summer
 - Production starts this autumn 2022
- DRIE etching of pillars
 - Deposit oxide and metal afterwards
- Metal not in direct contact with the semiconductor
 - Milder operation conditions for silicon
- Process related constraints
 - Scalloping

Conclusion

- Two demonstrator productions are initiated
- MacEtch fabrication is well advanced
 - Last process optimisation steps remains
- Fabrication using DRIE is progressing
- After productions:
 - Electrical characterisation

