

EP-R&D Silicon Working Group 1.1

Hybrid Detectors

Sensor Characterization: from process to timing

Evangelos –Leonidas Gkougkousis

CERN EP-R&D

Process Characterization

Secondary Ion Mass Spectroscopy

Accurately study gain layer to correctly reproduce impact ionization in TCAD simulations

- Understand radiation damage and acceptor removal vs gain layer geometry
- ➤ Test Carbon concentration and its relation to radiation damage improvement

Evaluate process flow in case of issues and establish failure point (see Jakob's presentation about ADVACM planar)

Paris

planarity

mbar primary vacuum, O2 or Cs ions

Process Characterization

Presentation: V. Gkougkousis, "Detailed process characterization of carbonated LGADs through Secondary Ion Mass Spectroscopy", 17th Trento workshop on advanced silicon radiation detectors (link)

Carbonated LGAD Profiles

Carbon Content

Gain Layer

- ✓ No Carbon detected to the level of > 4×10¹⁶ atoms/cm³ for the CNM samples
- CNM Carbonated vs. Noncarbonated samples at the same background level concerning carbon signals
- ✓ FBK Carbon peak in agreement with gain layer peak as expected though their process
- ✓ Carbon tails at higher end due to measurements and crater edge effects
- ✓ Highly accurate detection limits of 4×10¹⁶ atoms/cm³ for carbon and 1.3 ×10¹⁴ atoms/cm³ for Boron with 5 nm layer precision

Simulation Parameters

Carbon Simulation – Boron Deactivation

- ✓ Complete TCAD Simulation of the total thermal budget and implantation step for boron and Carbon
- ✓ Results for Boron in agreement with SiMS measurements in both depth and dose
- ✓ Carbon Profile deep diffused with average concentrations at the limit of detection

CNM R10478 - TCAD Procdess simulation

Cz High Resistivity Si substrate

- <100> orientation (dicing, radiation hardness)
- \triangleright Resistivity >4 k Ω hm*cm
- ► P concentration of 10¹² atoms/cm³
- Active thickness 50 µm
- Native oxide: 1.9 nm
- Screen Oxide: 50 nm (deposited)
- MC implantation:
 - ✓ 3000 tracks
 - √ Max track splits 6, splints per element 3
 - CristalTRIM algorithm
 - ✓ Clock seed randomization
 - Optimization error: ± 10¹⁴ atoms/cm³
 - ✓ Full cascade BCA damage (binary collision approx.,)
- > Diffusion (Transport) Mode: Dopant dependent
 - ➤ Boron —→ Charged Pair
 - Phosphorus Charged Pair
 - Carbon Neutral React
- Activation Models (See next slide)
- Synopsys info
 - ✓ Version 2019.12 with Advanced Calibration
 - / MGOALS meshing algorithm

Laboratory Measurements

β Source Characterization $^{90}_{38}Sr \rightarrow^{e^{-}} ^{90}_{39}Y \rightarrow^{e^{-}} ^{90}_{40}Zr$ E_{max} = 0.46 MeV E_{max} = 2.28 MeV $T_{1/2} = 28.8 \text{ y}$ $T_{1/2} = 64 \text{ h}$ 90 µm Al absorber source container + 500 µm Si source support back Trigger source support front Aluminum support assembl Minimum charge (reduced size) baseplate for good timing 5 σ from noise

- High frequency SiGe (~2GHz) amplifier
- Mean sensor + amplifier noise < 1.5 mV
- 5000 recorded events per point

Timing Configuration & Automation Software (TiCAS)

- ➤ Real-time Waveform Visualization
- > Dynamic adaptable UI with universal instrument support
- > Support for all LeCroy, Tektronix and Agilent oscilloscopes

Laboratory Measurements

β Source Characterization

 $^{\circ}_{38}Sr \rightarrow ^{e^{-}}_{39}Y \rightarrow ^{e^{-}}_{40}Zr$ $E_{\text{max}} = 0.46 \text{ MeV} \quad E_{\text{max}} = 2.28 \text{ MeV}$

 $T_{1/2} = 28.8 \text{ y}$ $T_{1/2} = 64 \text{ h}$

90 µm Al absorber + 500 µm Si

Minimum charge for good timing

 5σ from noise

- High frequency SiGe (~2GHz) amplifier
- Mean sensor + amplifier noise < 1.5 mV
- 5000 recorded events per point

Timing Configuration & Automation Software (TiCAS)

- Real-time Waveform Visualization
- > Dynamic adaptable UI with universal instrument support
- ➤ Support for all LeCroy, Tektronix and Agilent oscilloscopes

•3D Sensors

Timing at Extreme Fluences

3D Sensors: Decoupling of charge generation and drift volume (Standard columns, TimeSpot, Hex geometries ect.)

Pros

- High radiation tolerance up to several times 10¹⁶ n_{eq}/cm²
- Short drift distances with fast rise times
- Reduced Landau fluctuation, practically non-existent for perpendicular tracks

Cons

- Non-uniform field geometry
- High cost
- Increased cell capacitance

Double Sided (thicker, more expensive)

Single Sided (thinner, simpler process)

Pixel Size vs Field Uniformity

ATLAS IBL Type

- ✓ Double sided n-on-p process
- ✓ Pixel Size $55 \times 55 \mu m^2$
- ✓ Active thickness 230 µm
- ✓ High Resistivity (> 2 k Ω m × cm) Fz silicon

ATLES Pre-Production type

- ✓ Single sided n-on-p process
- ✓ Pixel Size $25 \times 100 \, \mu \text{m}^2$
- ✓ Active thickness 150 μm
- ✓ High Resistivity (> 2 kΩm × cm) Fz silicon

- ✓ Single sided n-on-p process
- ✓ Pixel Size $50 \times 50 \, \mu \text{m}^2$
- ✓ Active thickness 150 μm
- \checkmark High Resistivity (> 2 kΩm × cm) Fz silicon

Laboratory Characterization

- Initial results demonstrate a 40 psec time resolution
- Uniform response across all thresholds

Irradiations

Neutron @ JSI (Ljubljana)

 $1 \times 10^{15} \, n_{eq}/cm^2$

 $\sqrt{8 \times 10^{15} \, n_{eq}/cm^2}$

 \checkmark 6 × 10¹⁶ n_{eq}/cm²

 $1 \times 10^{17} \, n_{eq}/cm^2$

Proton @ PS

 $1 \times 10^{15} \, n_{eq}/cm^2$

 \checkmark 8 × 10¹⁵ n_{eq}/cm²

 \checkmark 6 × 10¹⁶ n_{eq}/cm²

 $1 \times 10^{17} \, n_{eq}/cm^2$

Presentation: V. Gkougkousis, "Single cell 3D timing: Time resolution assessment and Landau contribution evaluation via test-beam and laboratory measurements", 17th Trento workshop on advanced radiation silicon detectors (link)

$$(\sigma_{\mathrm{Dut}})_{\mathit{CFD}_{ij}} = \sqrt{(\sigma_{\mathrm{Tot}}^2)_{\mathit{CFD}_{ij}} - (\sigma_{\mathrm{Ref}}^2)_{\mathit{CFD}_i}}$$

CFD Map, LGAD - Single Pixel 3D (-20°C, 20V)

2D optimization plot – 0.5% binning

Time Resolution:
$$\sigma_{tot}^2 = \sigma_{timewalk}^2 + \sigma_{jitter}^2 + \sigma_{conversion}^2 + \sigma_{Clock}^2$$

$$\sigma_{Dist.}^2 + \sigma_{Landau}^2 \left(\frac{t_{rise}}{S/N}\right)^2 \quad \left(\frac{TDC_{bin}}{\sqrt{12}}\right)^2 \quad Fixed \ Term \sim 5-7 \ psec$$

Test Beam

Jun

15 - 29 June

Jul

PIXEL

6 July – 13 July

Aug

31 August - 14 September

20 - 27 September

Oct

38 | 39 | 40 | 41 | 42 | 43 | 44 | 45

17 - 24 October

Sep

- Several periods but only two as primary user
- Main target irradiated Planar / 3D sensors
- No / Limited possibility of extension
- Extensive infrastructure developments

The Setup

Mai

- AIDA Telescope
- **Custom Cold Box**
- DUTs on individual stages
- Discrete electronics and Oscilloscope

Test Beam

TimePix 4 Telescope

- ➤ Only one arm with 3 Planes in 2021
- ➤ Already preliminary results available
- Result with time walk and per pixel corrections (~ 600 psec improvement)

- ➤ Plan for 2022 for 6 planes
- ≥ 2nd week of July next beam time slot
- Expecting DUT operation at the end of the year

16 Channel Board

The solution

- High Frequency SiGe technology discreate electronics with 12 GHz bandwidth
- ➤ 2 Stage configuration with a transimpedance followed by a voltage amplifier
- ightharpoonup Low max current (\sim 10mA) with well behaved gain linearity vs V_{DD}
- ➤ Independent Shielding per channel
- Ruggers 3000 High Frequency substrate
- Sensor Daughter board for versatile operation
- Pre-assembled miniaturized coaxial edge connectors with panel-mounted SMA plugs (Im cable length)
- > 140 mm x 140 mm outer dimensions

 Assuming a linear filed dependence and a -15 V operation point at 35 μm column distance:

$$|E| \cong 0.43 \, V/\mu m$$

Estimating drift velocity for electrons:

$$v_{drift}^{e} = \frac{\mu_{0,e} \times E}{\left[1 + \left(\frac{\mu_{0,e} \times E}{v_{sat.}^{e}}\right)^{\beta_{e}}\right]^{1/\beta_{e}}}$$

with $v_{sat.}^e = 107 \ \mu m/ns$, $\mu_{0,e} = 1417 \frac{cm^2}{Vs}$, $\beta_e = 1.109$

$$v_{drift}^{e} \approx 41.4 \, \mu m/ns$$

Extrapolated Rise time and Frequency:

$$t_{Rise} \approx \frac{1}{3} \times t_s = \frac{1}{3} \times \frac{d/2}{v_{drift}^e} \approx 140 \ psec \Rightarrow 2.3 \ \text{GHz}$$

16 Channel Board

- Optimized design for uniform response with frequency
- No sharp gain change discontinuities
- ➤ No undershoot/overshoot observed
- ➤ Gain moderated to ~70 for a two-stage configuration
- ➤ 20% Higher SNR than UCSC board (with both stages)
- ➤ 2 x SNR with respect to UCSC board + niniCircuits second stage amplifier
- On going energy and transimpedance simulation

With signal injection

Without signal injection

Blue: 16 channel board

Yellow: UCSC board (only one stage)

Conclusions

Characterization Systems

Beta Source Setup: Three object system with a pixelated plane and alignment matrices

for "true" efficiency measurements

• SiMS: Detailed Process Characterization and Simulation of delivered sensors

• **Test beams:** Unbiased Timing and detailed efficiency and timing (field maps)

3D Pixels

- 3 different productions under investigation
- Estimate filed non-uniformity impact on time resolution with respect tp pixel size
- Determine minimal acceptable thickness for time resolution applications
- Investigate effects after irradiation at 1e17 in protons and neitrons

20 / 6 / 2022 E. L. Gkougkousis

Backup

Equipment List

- 2 x Oscilloscopes
- ▶ 9 x Keithley 2410
- 6 x TTi PL303
- 8 Second stage amplifiers

Actions

Lab testing

Verification

Lab testing

Lab testing

Lab testing

Ready

Ready

- 6 micro-positioning stages
- Humidity Temperature monitoring system (EnViE)
- Cold Box for -20°C operation
- Trigger Interface Board V2.0
- SMA Cables