

EP R&D Day 2022, 20 June 2022

WP1.4. Silicon Detectors Characterization and Simulation

Eric Buschmann, Justus Braach, Esteban Curras, Katharina Dort, Dominik Dannheim, Marcos Fernandez Garcia, Anja Himmerlich, Michael Moll, Sebastian Pape, Vendula Maulerova-Subert

on behalf of the WP1.4. team

WP 1.4. Simulation & Characterization

CERN EP R&D

Increasingly complex sensors and readout ASICs require improved characterization, modelling and simulation, including radiation effects

CERN

Radiation-hardening

- Defect characterization
- Damage models & simulation
- Radiation hard devices
- LGAD and p-type silicon

Radiation monitoring techniques

- New radiation sensors
- Revision of NIEL scaling
- Dosimetry for ultra-high radiation levels

Characterization Infrastructure Development

- Flexible readout systems
- Laser test stands (TPA-TCT)
- Defect characterization tools

Advanced detector simulations

- Charge & damage creation
- Device physics, signal formation
- Front-end response
- Simulation of data stream

technische universität dortmund

20.06.2022 EP R&D Day

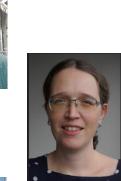
WP1.4. Characterization and Simulation -- Introduction

Física de Cantabriz

дp

Garfield+

JLU


WP1.4. Team at CERN

- Michael Moll & Dominik Dannheim (WP leaders)
- Marcos Fernandez-Garcia (IFCA, Spain, visiting scientist)
- Ruddy Costanzi (Technical Engineer EP-DT, support)
- Esteban Curras [until Feb.23]
 - Fellow, EP-DT/WP1.4. •
 - LGAD sensors & SSD lab •

Sebastian

- Anja Himmerlich [until Jan.23]
 - Fellow, PCB ٠
 - Defect studies DLTS, TSC •
- Sebastian Pape [until Feb.24]
 - DOCT, Gentner Prg. ٠
 - **TPA-TCT** measurements
- Vendula Subert [until Oct.23]
 - DOCT, WP1.4. ٠
 - NIEL studies, Geant4 •

Anja

•

Vendula

20.06.2022 EP R&D Day

Eric Buschmann [until July 23] Fellow, WP1.2./1.4.

MAPS

MAPS

- Caribou, DAQ, MAPS
- Katarina Dort *[until June 22]* •

Justus Braach [until Feb.24]

DOCT, Gentner Prg.

DOCT, Gentner Prg. Simulations (TCAD, AP2)

Katarina

Eric

EP

R&D

many more collaborators

Test-beam & lab hardware,

- WP1.4. core resources (2022)
 - 1.5 FTE/year Fellow
 - 1 FTE PhD/year
 - 75 KCHF/year materials
- Resources through other funds/programs (essential!)
 - Close collaboration with other EP-RD silicon WPs
 - CERN PCB Fellow, Gentner Prg., EP/DT labs & services
 - AIDAinnova, EUROLABS, RD50, ...

Participants

- WP1.4.& WP1.x EP-RD teams at CERN
- External collaborators

 (see slides about specific WP1.4. projects)
 + many more collaborators
 https://ep-rnd.web.cern.ch/topic/simulation-and-characterization

• EUROLABS (from 9/22)

TNA to irradiation facilities

• AIDAinnova (2021-25)

- WP1.4. members are leading tasks
- CERN (WP1.4.) is beneficiary in:
 - Task 3.5. Development of common DAQ
 hardware [Caribou project]
 - Task 4.3. Common tools for irradiation facilities
 quality control [NIEL project]
 - Task 4.4. Design & development of a TPA-TCT characterisation system [TPA-TCT project]
 - Task 6.3 Validation of common 3D and LGAD sensor productions [LGAD project]

• RD50

- WP1.4. projects are part of RD50 work program
- RD50 projects with RD50 financial contribution:
 - Caribou common board production
 - TPA-TCT beam time at laser facilities
 - Common production of test structures

R&D work plan 2018 (initial plan)

- Commission a **TPA-TCT setup** (Two Photon Absorption-Transient Current Technique)
- Produce a high resolution (spatial, timing) beam telescope
- Advanced simulation tools
- Radiation damage measurements and validated models incl. TCAD
- Radiation monitors for >10¹⁶n_{eq}/cm²
- Flexible readout system
- Maintain & extend characterization lab

R&D work plan 2018 (initial plan)

- Commission a **TPA-TCT setup** (Two Photon Absorption-Transient Current Technique)
- Produce a high resolution (spatial, timing) beam telescope
- Advanced simulation tools
- Radiation damage measurements and validated models incl. TCAD
- Radiation monitors for >10¹⁶n_{eq}/cm²
- Flexible readout system
- Maintain & extend characterization lab

R&D work plan 2019 (reduced budget allocated)

- Commission a TPA-TCT setup
- Produce a high resolution (spatial, timing) beam telescope (moved to WP1.1.)
- LGAD for timing studies included in damage modelling studies
- Advanced simulation tools
 (reduced scope: no WP1.4. funding)
- Radiation damage measurements and validation of models (reduced scope: no TCAD modelling)
- Radiation monitors for facility calibration including NIEL studies (reduced scope: no ultrahigh fluence, staged sensor production)
- Flexible readout system
- Maintain & extend characterization lab

R&D work plan 2018 (initial plan)

- Commission a **TPA-TCT setup** (Two Photon Absorption-Transient Current Technique)
- Produce a high resolution (spatial, timing) beam telescope
- Advanced simulation tools
- Radiation damage measurements and validated models incl. TCAD
- Radiation monitors for >10¹⁶n_{eq}/cm²
- Flexible readout system
- Maintain & extend characterization lab

R&D work plan 2019 (reduced budget allocated)

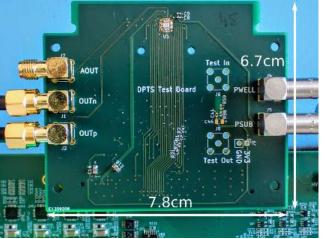
- Commission a TPA-TCT setup
- Produce a high resolution (spatial, timing) beam telescope (moved to WP1.1.)
- LGAD for timing studies included in damage modelling studies
- Advanced simulation tools
 (reduced scope: no WP1.4. funding)
- Radiation damage measurements and validation of models (reduced scope: no TCAD modelling)
- Radiation monitors for facility calibration including NIEL studies (reduced scope: no ultrahigh fluence, staged sensor production)
- Flexible readout system
- Maintain & extend characterization lab

Status 2022 (see following presentations)

- TPA-TCT setup existing at CERN
- Simulation tools validated
 - TCAD and generic MC tools validated
- Radiation damage models
 - LGAD studies lead to new model for impact ionization (WP1.4.)
 - Acceptor removal project identifies the defect responsible for the LGAD degradation (Defect engineering!)
 - LGAD radiation hardness achieved with Carbon co-doping (RD50 collaboration)
- NIEL model advancing
- Caribou readout system
 - DAQ extended, systems distributed
- Characterization lab
 - New tools produced

R&D

EP

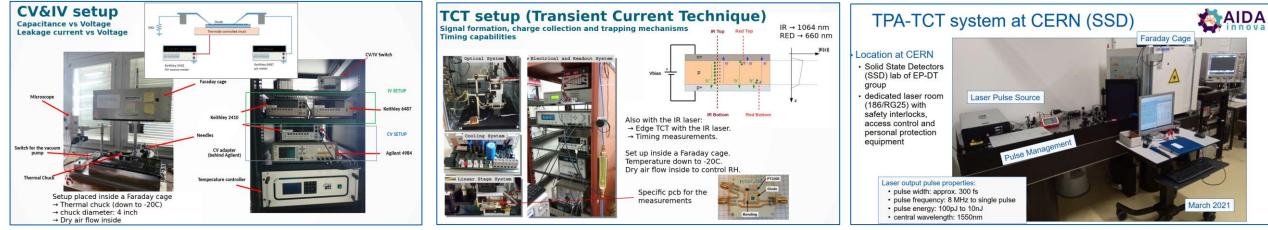


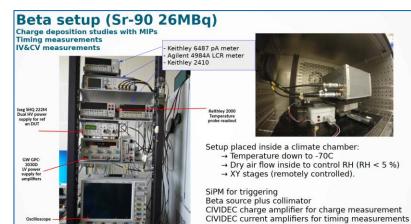
- Versatile open-source DAQ system adapted and used for various monolithic and hybrid EP R&D pixel-detector developments
- Significant progress in 2021/22, thanks to external resources and large user community (RD50, AIDAinnova):
 - Implementation of several new 65-nm devices: DPTS, APTS, H2M (in progress)
 - full analog pixel readout with fast sampling ADCs
 - Integration in various beam-telescopes (AIDA, Timepix3, ALPIDE)

Caribou in DESY TB

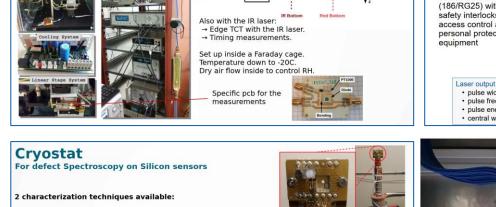
DPTS chip board

Caribou in CERN Timepix3 telescope


APTS chip board



SSD: Solid State Detectors lab & test beam activities



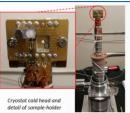
Detector Technologies

EP-DT

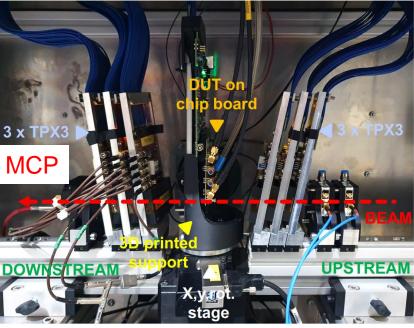
CERN

CERN

Thermally Stimulated Current (TSC) Spectroscopy → Keithley 6517A picoAmmeter + custom made DAQ)


Deep Level Transient Spectroscopy (DLTS) → Commercial system (Phystech HERA DLTS)

Closed cycle liquid helium cryocooler machine Temperature range: 10 K to 400 K


WP1.4. characterization tools for solid state

detectors: also a service to the community!

Addition of light source in progress Sensor front and back illumination 530, 625, 740 and 940 nm wavelengths

US16-EPI-05-50-DS-98-50ohm, V. = 100.0 V

20.06.2022 EP R&D Day

WP1.4. Characterization and Simulation -- Introduction

WP1.4 Achievements & Outlook

- All present WP1.4. activities are well aligned with the detector roadmap
 - they are targeted in DRDT 3.2. "4D-solid state detectors" and DRDT 3.3. "extreme fluences"

• WP1.4. major achievements:

- Two Photon Absorption TCT (**TPA-TCT**) fully commissioned: A major step forward in sensor characterization.
- Significant progress in understanding defect formation in p-type silicon & impact on detector performance.
 - Defect engineering with Carbon enrichment has enabled operation of LGADs for ATLAS/CMS phase II timing detectors
- Caribou readout system widely used in the community
- Advanced simulation tools (Allpix Squared and Garfield++, combined with 3D TCAD) were further improved and validated against data and now allow for precise time-resolved modelling, which has been instrumental for a wide range of sensor optimisations.

• Future plans (assuming we manage to replace the leaving externally funded researchers):

- TPA-TCT: upgrade towards a versatile fully fiber based system (within AIDAinnova/RD50)
- Defect studies: solve the "acceptor removal riddle", i.e. go from qualitative to quantitative understanding
 - new sensor production (Carbon + Boron doping) + collaborate with Solar Cells for space community
- NIEL: production of sensors for better NIEL measurements
- Caribou: Implement prototype MAPS developed in WP1.2. + long term upgrade to System on Module platform
- SSD lab: extend characterization lab with an optical cryostat
- New study: Evaluate CCDs for Dark Matter search to understand if formation of defects can be used for DM searches