

EP R&D on Experimental Technologies WP8 Magnet Detector R&D

21st June 2022

Benoit CURE – EP/CMX

Content

1- WP8

Scope People and Organisation Activities and results over 2020-2022

- 2- Detector R&D roadmap developed by the European Committee for Future Accelerators (ECFA)
- 3- WP8 workplan for second half of R&D program
- 4- WP8 program extension request

EP R&D WP8 Activities

→ WP8 on Magnet Detector R&D launched in 2020 with **3 major R&D areas** (scope reduced compared to the initial plan to meet the available budget).

Scope for years 2020-2024

CERN

R&D

FP

- 8.1 Advanced Magnet Powering
- 8.2 Reinforced Super-Conductors and Cold Masses On hold
- 8.3 Ultra-Light Cryostat Studies Integrated into WP4
- 8.4 New 4-Tesla General Purpose Magnet Facility for Detector Testing
- 8.5 Innovation in Magnet Controls, Safety Systems & Instrumentation

WP8 organisation

CERN

R&D

FP

Program started at the time of the **Covid pandemic** :

Still possible to begin the activities with one fellow and one technical student, but it was a slow start due to Covid.

Over the Covid period, the works were adapted to the conditions:

- Prototyping delayed until access to CERN was granted, following CERN recommendations regarding on-site presence,
- First focusing more on studies, but with limited internet speed for remote connections.

We selected highly motivated candidates with excellent background in mechanical and electrical engineering, cryogenics, instrumentation.

- Candidates were selected to have complementary scientific backgrounds in the team, but few of the applicants had full university education in the field of superconductivity.
- > The works were also adapted to enable the fellows & students to learn in this field.

WP8 organisation – period 2020-2022

Members of the team:

- Fellows: Shuvay Singh, Anna Vaskuri
- **Technical Students:** Filip Malinowski, Michela Neroni, Weronika Głuchowska, Robert Jurco
- Staff: Alexey Dudarev, Matthias Mentink, Nicola Pacifico, Benoit Cure
- + support from :
- Atlas Magnet Team Fellow: Nikkie Deelen
- Trainees: Tonke Boelens, Pieter Kruyt, Dennis Klaassen

WP8 organisation

In the frame of our activities we have received the welcome (and appreciated) support from:

- TE-CRG Cryolab for test facility design and testing (snubber, 5-T small coil),
- EP-DT-DI magnet control section (b180 new test facility control system),
- EP-DT-TP for contribution to instrumentation studies,
- TE-VSC-SCC for material analysis,
- EN-MME for material testing,
- **EN-EL** for the electrical distribution of b180 new test facility,
- ATLAS (and CMS) support team for technical activities.

Many thanks to them for their useful collaboration !

WP 8.1 - Advanced Magnet Powering

Original workplan

Scope for years 2020-2024

- Magnet powering and protection
- Free wheel systems and persistent mode current switch
- Energy extraction studies and quench protection
- Studies applied to WP8.4.

Resources: (½ fellow + 1 technical student) / year over 2020-2022

Deliverable 2020 - mid 2022:

- Feasibility studies and reports.
- Conceptual Design reports based on simulation, technical designs, construction of demonstrator models and testing.

Results

Activities 2020- mid 2022

- Quench protection studies and modelling, applied to the 4-T magnet studies,
- 2. Snubber studies for implementation on Atlas Barrel Toroid,
- 3. Commissioning of CMS free wheel system,
- 4. Study of persistent mode current switch,
- 5. Study of flux pump.

Resources: (1/2 fellow + 1 technical student + trainee) / year over 2020-2022

Results 2020 – mid 2022:

- Feasibility studies and reports : done (1-2-4-5)
- Computational simulations: done (1-2-4-5)
- Conceptual design reports based on simulation: done (2-4-5); construction of demonstrator models and testing : done (2), in progress (5)
- Implementation and final testing campaign : done (2-3)

CERN

WP 8.4 - New 4-Tesla Magnet Facility

Original workplan

Scope for years 2020-2024

 Conceptual design study of a 4-T magnet for a test beam facility

Resources: ½ fellow / year over 2020-2022

Deliverable 2020 – mid 2022:

- Magnet design.
- Magnet subsystem design (cryogenics, powering, cryostat, yoke, support system)

R&D

Results

Activities 2020- mid 2022

- 1. Definition of technical requirements,
- 2. Studies of magnet layout and stray field
- 3. Definition of conductor and cold mass
- 4. Study of cryogenics

Resources: 1/2 fellow (2020-22)+ 1 technical student (2021)

Results 2020 - mid 2022:

• Magnet concepts: done, reported and published.

Two options studied, Split coil solenoid and Dipole (Magnadon*).

Conductor and winding defined: pancake winding of reinforced AI-stabilized NbTi conductor.

• Magnet subsystem studies on:

Inner cryogenics, powering system, yoke. In progress: cryostat, support system.

* discussed with MADMAX collaboration as potential application.

WP 8.5 - Innovation in Magnet Controls, Safety Systems & Instrumentation

Original workplan

Scope for years 2020-2024

- Quench protection in HTS: fast detection, sensitivity, low voltage;
- Magnet controls : requirements, identification of future systems;
- Instrumentation: magnetic
 measurement, interfaces CAN FD.
- Applied to the 4-T magnet beam test facility to test and qualify these systems.

Resources: activity starting from mid 2021 with 1 fellow + 1 technical student

Deliverable mid 2021 – mid 2022:

- Magnet control system needs.
- Testing and reporting.
- Simulation, prototyping with new instrumentation.

Results

Activities 2021 - mid 2022

- 1. New testing setups for HTS tape characterisations.
- 2. Assembly of a new low-T test bench facility with SC magnet for SC cable measurements and further prototype testing.
- 3. Scrutiny of emerging optical technologies in position measurement for potential application to fieldmapping.
- 4. Study of an innovative insulation system.

Resources: 1 fellow / year from Oct. 2021 + 1 TS (2022)

Results 2021 – mid 2022:

HTS studies: in progress

Computational simulations, Construction of cable demonstrator models and testing.

- Test bench facility installation : in good progress.
- New magnet control system to be implemented on new test facility (with EP-DT magnet control team).
- Report on optical technologies with discussion on applications and level of accuracy: done.

CERN

Detector Research and Development Themes (DRDTs) identified in the Roadmap report.

DRDT 8.1: Develop Novel Magnet Systems

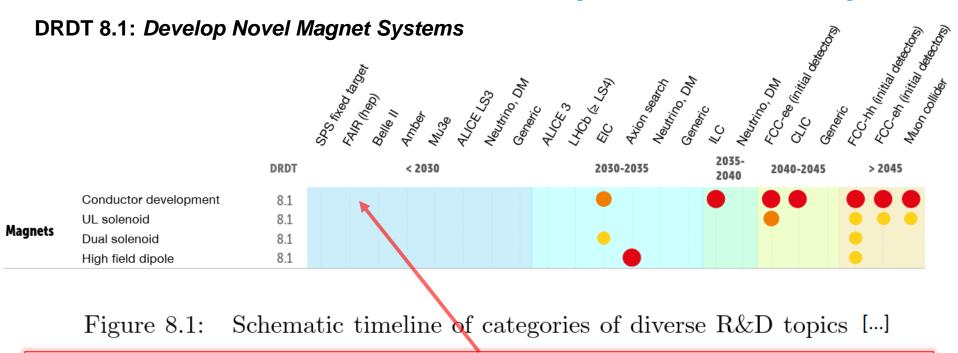
in Chapter 8 - Integration ; 8.3 - Key technologies

Integration (Task Force 8)

DRDT 8.1 - Develop novel magnet systems.

Magnet requirements are very specific to the design of the detector. Considering the very long lead time, generic R&D programmes must be established and maintained on dedicated conductors and prototyping to achieve the variety of magnet specifications.

DRDT 8.1: Develop Novel Magnet Systems


Some examples of future magnet systems that represent the spectrum of engineering challenges and R&D needs for this topic :

Accelerator	Detector	B [T]	R[m]	L[m]	I [kA]	E [GJ]	comment	
LHC	CMS	4	3	13	20	2.7	scaling up	
LHC	ATLAS	2	1.2	5.3	7.8	0.04	scaling	reference
	solenoid						up	
FCC-ee	CLD	2	3.7	7.4	20-30	0.5	scaling up	
[Ch8-1]	IDEA	2	2.1	6	20	0.2	ultra light	
CLIC	CLIC-detector	4	3.5	7.8	20	2.5	scaling up	
[Ch8-2]								
FCC-hh	main	4	5	19	30	12.5	new scaling	
[Ch8-3]	solenoid						$^{\mathrm{up}}$	
	forward	4	2.6	3.4	30	0.4	scaling up	
	solenoid							
IAXO	8 coil toroid	2.5	8x0.6	22	10	0.7	new toroid	
[Ch8-4]								
MadMax	dipole	9	1.3	6.9	25	0.6	large volume	
[Ch8-5]								

Table 8.1: Examples of magnets for future experiments that represent the engineering and R&D challenges. The dimensions and fields refer to the free bore. The magnets for ATLAS and CMS are given for reference.

R&D

Given the time required for **procurement, conductor manufacturing, coil and detector assembly**, **the availability of the superconductor** comes quite early in the project plans.

R&D on superconductors must be achieved well in advance of detector completion (minimum ~ 5 to 7 years).

CERN

R&D

FP

DRDT 8.1: Develop Novel Magnet Systems -

Summary of the key technologies needed, as listed in the ECFA report :

Magnets for collider experiments:

- Development of next generation of AI-stabilized high-yield strength Rutherford cable superconductors and prototyping for 30-40 kA large coils placed behind calorimeters.
- R&D on conductors and prototyping for thin conductors Al/Cu/NbTi for small coils placed in front of the calorimeters.
- Long term: development of high temperature superconductors for coils and current leads.
- R&D for assemblies with dual solenoids for magnetic shielding.

Magnet for non-collider experiments:

R&D

FP

CERN

• large volume magnets for axion searches [...], and high field

Development of quench protection, energy extraction and high voltage designs for coils with high energy/mass ratios is also needed.

WP8 workplan for second half of R&D program

Workplan to be continued according to the reduced initial scope.

WP 8.1 – Advanced Magnet Powering

Continue on powering system demonstrators and testing.

WP 8.4 - New 4-Tesla Magnet Facility

Plan to build a demonstrator coil including concepts with potential use for future magnets.

WP 8.5 - Innovation in Magnet Controls, Safety Systems & Instrumentation

Implement a specific instrumentation and test system for HTS superconductor cables.

Continue prototyping and testing of these HTS cables, including the use of a new insulation.

More details in the next presentation by Matthias Mentink

WP8 request for R&D program extension from 2023 onwards

- To keep plans of EP R&D WP8 in line with ECFA DRDT 8.1:
- $\rightarrow\,$ Enlarge the scope of activities on superconductor R&D, for period 2023-2027
- Strong need identified for aluminum stabilized superconductor prototyping & pre-industrialization, for CERN programs and associated projects:
 - Babylaxo, Alice3, FCC-ee (ultra-thin and conventional), CLICdp, FCC-hh.
- ⇒ Request the EP R&D Committee to consider activating the WP8.2 on reinforced superconductors and cold masses from 2023 onwards, with resources to be defined.

WP8 request for R&D program extension from 2023 onwards

WP 8.2 workplans reported earlier (blue report CERN-OPEN-2018-006)

Scope given: to identify and propose manufacturing routes, in view of producing sample lengths with industry that can be adapted for scaling up to production for future detector magnet conductors.

To be discussed in a specific meeting.

R&D work plan		WG 8 - Detector Magnets Avtivity 8.2						
Short description:	Reinforced Super Conductors and Cold Masses							
Long description:	Design goal is a 2-4T solenoid cold mass with radiation length less than 1 X0. This							
8	requires very high yield strength Al stabilized and reinforced NbTi/Cu conductors.							
	The project comprises cold mass and conductor mechanical design, quench dumps							
	studies, conductor development and demonstrator tests.							
	date	count month from start of R&D) item						
Deliverables	12	Review study reinforcement options, thin cold mass design report.						
(max. 5)	24	hort sample productions, welding technology, and characterization						
	36	hort sample productions, welding technology, and characterization.						
	48	elected conductor unit length production and coiling/bending test.						
	60	eporting, evaluation and outlook.						
Milestones	12	Review study report.						
(max. 5)	24	Short sample test reports.						
	36	Short sample test reports.						
	48	ong unit test report.						
	60	est coil report, final report, batch of samples made.						

Initial workplan proposed:

21 June 2022

ep-rnd.web.cern.ch