

EP R&D on Experimental Technologies WP8.1 & 8.4 activities Magnet Detector R&D

21st June 2022

Benoit CURE on behalf of

SHUVAY SINGH – EP/ADO-SO

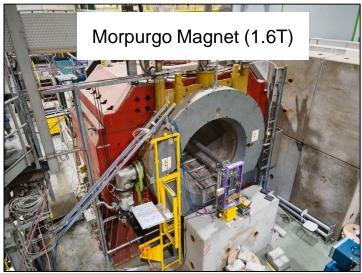
RECENT ACHIEVEMENTS

NEW 4-T MAGNET FACILITY ADVANCED MAGNET POWERING 3D PRINTED CRYOGENIC MATERIALS

New 4-T Magnet Facility

21 June 2022

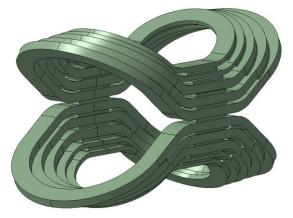
Shuvay Singh | EP - WP8 - Detector Magnet R&D


Summary and Direction taken in 2021

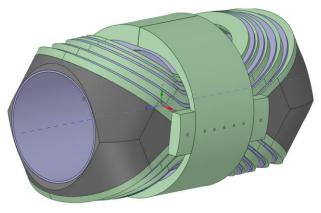
- Two magnet concepts studied, both with a 4-T central field
- Designs bearing similarities to 2 existing SC magnets within EP in CERN North Area:
 - M1 H2 : split coil solenoid (SCS)
 - Morpurgo H8 : dipole
- Common characteristics

R&D

- > **4.5 K** operation temperature (with 2 K of margin)
- Nb-Ti/Cu Rutherford cable with aluminium stabiliser
- Pancake winding technique
- Iron yoke necessary to limit the stray field below 15 mT at 5-m distance
- Fully passive thermo-siphon helium cooling

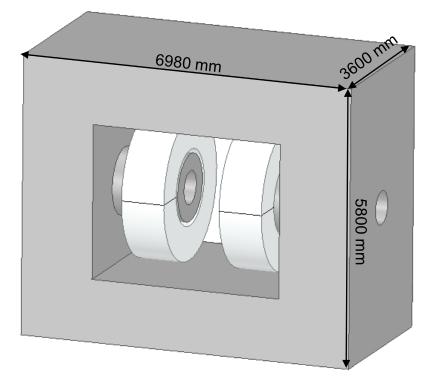


The Magnadon

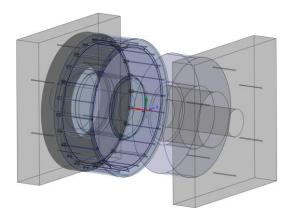

MAGnet for North Area with a Dipole CONcept

~ 2 m bite radius / outer bore like the jaws of

a Megalodon


- New design with a tilted racetrack "skateboard" shape
- Compatible with Morpurgo iron yoke
- Was considered as potential magnet for MADMAX collaboration (Special thanks to CEA - IRFU Saclay for fruitful discussions)
- More complex winding process and mechanical structure to be further developed, compared to SCS.
- Decision end 2021 to continue with the Split Coil Solenoid at this stage, with its conventional double pancake.

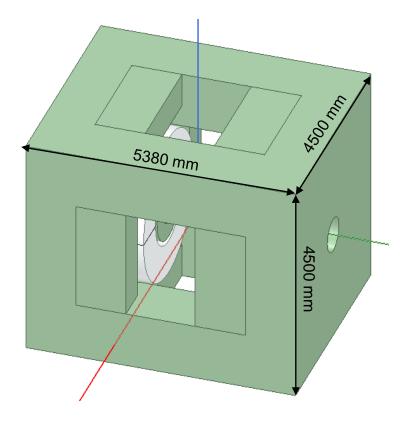
Specifications	
Field at Center	4 T
Free warm bore diameter	1400 mm
Total Stored Energy	80 MJ
Peak field in conductor	5.5 T
Stray field at 5 m	11 mT



Split Coil Solenoid Magnet in 2021

Presented at 2021 EP R&D Days

Specifications	
Field at Center	4 T
Free gap	1000 mm
Free bore diameter	700 mm
Total Stored Energy	130 MJ
Axial coil length	900 mm
Peak field in conductor	5.7 T
Stray field at 5 m	9 mT


- Coils supported by the yoke end plates with tie-rods
- Cryostat takes large compression load

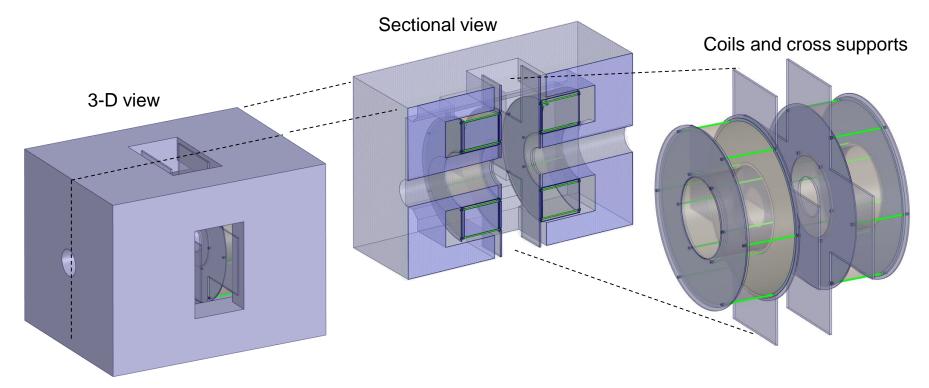
R&D

FP

CERN

Split Coil Solenoid 2022 improved Design

CERN


FP

R&D

Specifications	2021	2022
Field at Center	4 T	4 T
Free gap	1000 mm	1000 mm
Free bore diameter	700 mm	700 mm
Total Stored Energy	130 MJ	106 MJ
Axial coil length	900 mm	600 mm
Peak field in conductor	5.7 T	5.7 T
Stray field at 5 m	9 mT	15 mT

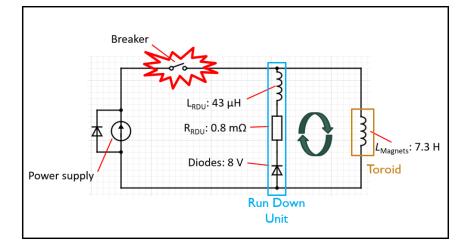
- Iron yoke redesigned to be symmetrical in X and Y direction
- Yoke mass reduced by **230 tons** (-30%: 800 tons → 570 tons)
- Simplification of assembly with smaller and thinner iron pieces

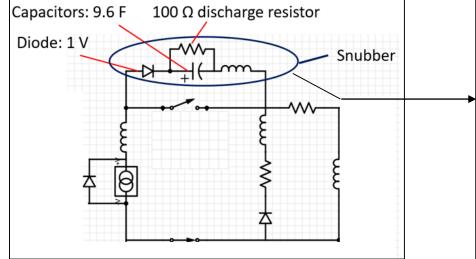
Split Coil Solenoid 2022 improved Design

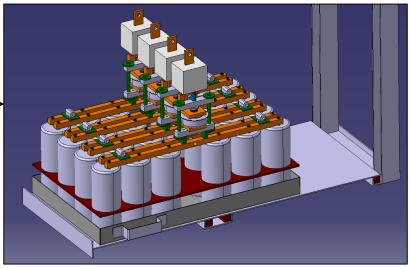
- New support structure design simplifies the assembly and reduces conductive heat loads
- Forces of the coils are directed away from the center and supported directly by the iron yoke via the center Cross-Supports
- This allows for tie-rods with smaller diameter and the cryostat to be significantly thinner wrt 1st design

CERN

R&D

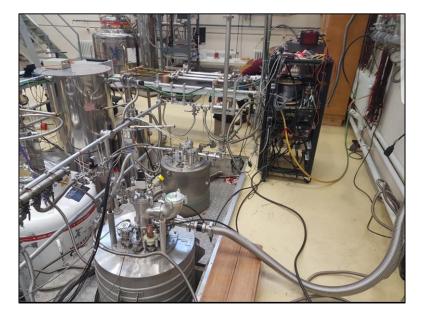

FP

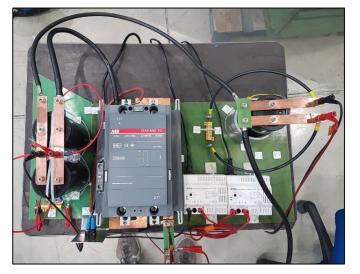

Advanced Magnet Powering

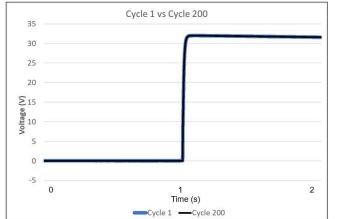


Detector Magnet Powering System: Snubber

- An arc suppression system (Snubber), has been implemented in the ATLAS Toroid magnet during LS2
- Against arcing of the power circuit breakers that occurs when triggering a discharge due to parasitic inductance in the powering/discharge circuit







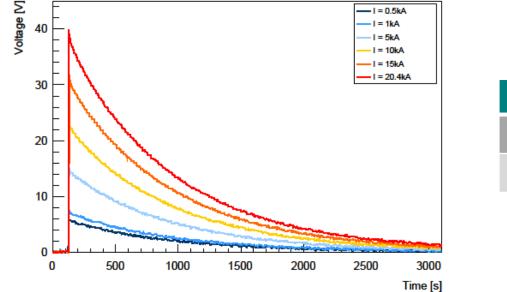

Steps during Snubber Development

- a 1/50th scale snubber was produced and successfully tested in December 2020 at TE-CRG Cryolab with a SC magnet, to determine proof of concept, degree of effectiveness and repeatability of operation
- Endurance charge-discharge cycle tests of electrolytic capacitors showing capability for a 20-year operation time

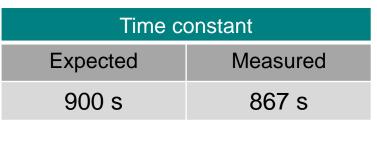
Snubber Manufacture and Installation

- Snubber manufactured and installed into the ATLAS Toroid circuit in November 2021
- Instrumentation commissioning completed in December 2021

21 June 2022



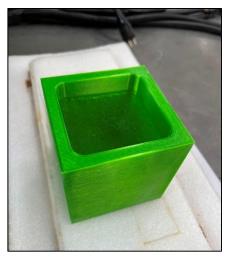
Snubber installed in CT-2 breaker



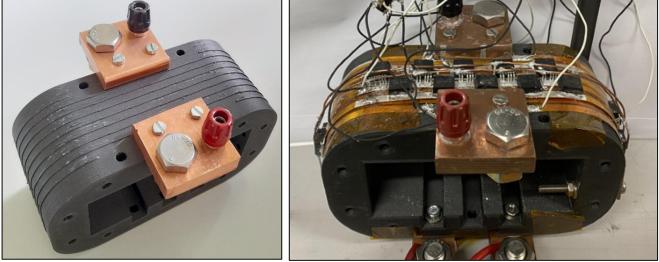
Snubber Commissioning Discharges

- Snubber successfully commissioned at several magnet current values during ATLAS toroid recommissioning in March 2022.
- Snubber behaved as expected time constant consistent with calculations
- After two 20.4 kA current discharges, the breaker temperature increase is below 2-degree per discharge, a five-fold improvement with respect to the previous run !

Snubber Voltage - Branch 1



Compatibility of 3D printed materials for cryogenic temperature applications



Testing 3D printed plastics at low temperature

- Initial idea was to check feasibility of using easy-to-build support structure for sample testing and detector magnets
- A study was launched to study cryogenic stability of a few 3D-printed materials
- Several materials have been found to withstand repeated thermal cycling without damage, the carbon powder reinforced material is of particular interest
- Compressive and tensile tests with EN-MME are on-going to determine accurate characteristics at 77K

Candidates have been found that are leak tight to liquid nitrogen whilst showing repeatability

Demonstrated as support structures for HTS sample testing

ep-rnd.web.cern.ch