WP6: High Speed Links

presented by Jan Troska & Mateusz Baszczyk on behalf of the WP6 team

WP6 Goals

Provide the future HEP systems with:

- High bandwidths: ~50 Gbps / lane
- High radiation tolerance
- c.f. ECFA roadmap

- Low power, low mass
- FPGAs
 - Compatible with the state-of-the-art

ASICS

- Advanced technologies 28nm CMOS
- High order modulation formats (PAM4)
- Drivers for SiPh optoelectronics
- Optoelectronics
 - Silicon Photonics (SiPh)
 - External Modulators
 - Ring & MZ
- Wavelength Division Multiplexing (WDM)

EP R&D WP6 High Speed Links

jan.troska@cern.ch

Future HEP Link Architecture

- Photonic Integrated Circuits (PICs)
 - RadHard "promise"
- Wavelength division multiplexing:
 - Lane: 25 Gbps NRZ / 50 Gbps PAM4
 - Fibre: 100 Gbps / 200 Gbps
- Laser out of radiation environment High radiation doses
- Low power / Low mass
 - How far can we push FE integration?

EP R&D WP6 High Speed Links

No or small radiation doses TPC-S up to 100 Mrad [1014 1MeV n/cm²] single-mode fiber HL-LHC: UP to 1 Grad (10¹⁶ 1MeV n/cm²) Drive Drivel Drive Aggregate This is a system concept used to give context to the overall project. It will yield building blocks which could be used to construct future systems that look different from this one jan.troska@cern.ch

WP6 Project breakdown

- Photonic Integrated Circuits (PICs)
 - RadHard "promise"
- Wavelength division multiplexing:
 - Lane: 25 Gbps NRZ / 50 Gbps PAM4
 - Fibre: 100 Gbps / 200 Gbps
- Laser out of radiation environment High radiation doses
- Low power / Low mass
 - How far can we push FE integration?

EP R&D

WP6 Team Evolution

CERM

EP R&D WP6 High Speed Links

WP6	P. Moreira (Leader) J. Troska (Deputy)		
ting / Emulation	Chip & System	Radiation Tolerance	Packaging
FPGA	OPTO1	OPTO2	OPTO3
Sophie Baron	Jan Troska	Jan Troska	
Eduardo Mendes w (June): owaroj Wanotayaroj	Carmelo Scarcella Csaba Soos Lauri Olantera Thenia Prousalidi Fellow (June):	Anthony Bulling PhD (March): Milana Lalovic	
w (October): rancesco Martina ember): owaroj Wanotayaroj	Fellow (August): Awanish Pandey		
			Task Cancelled in 2018

jan.troska@cern.ch

• •

ASIC1/2 actual vs planned

• To address the delayed start (2021 vs 2020):

- ASIC-1/2 activities merged
- Goals and milestones redefined (overall goals kept)
- Common chip submission
- Common test bench
- Common testing: functional & radiation

EP R&D WP6 High Speed Links

FPGA actual vs planned

OPTO1 actual vs planned

EP R&D WP6 High Speed Links

OPTO2 actual vs planned

EP R&D WP6 High Speed Links

jan.troska@cern.ch

Overview Methodology FEC choice and implementation Data-rates Transceiver module survey

FPGA task

EP R&D WP6 High Speed Links

FPGA task overview

- Understanding the High Speed link Market and Technology to answer
 - Which Modulation format is most suited to achieving the overall goals of the Project?
 - NRZ, PAM4, ...
 - Is Forward Error Correction (FEC) necessary and if so, what kind?
 - Standard vs Custom
 - What target data-rate (per lane, per link)?
 - the use of 'custom' (beam synchronous) line rates
 - Which Module types?
 - e.g. QSFP28, QSFP-DD, ...
 - Can we meet the optical power budget with custom front-end developments?
 - Which band/wavelengths for CWDM?
 - O-band (around 1310nm) vs C-band (around 1550 nm)
 - How will the Datacom Market evolve? What are the trends?
 - Crystal ball question to try to latch on to more long-lived link standards.

technical (and existential) questions for the ASIC & Photonics activities:

• At high data-rates, Clock and Data Recovery (CDR) circuits present in optical transceiver modules may prevent

jan.troska@cern.ch

beed	Lin	ks

FPGA task: Methodology

Continuous Technology survey

- FPGAs
- Commercially available optical transceivers
- Emerging standards
- Laboratory demonstrations
 - With state-of-the art
 - FPGAs
 - Optical transceivers
 - High end instrumentation

 Continuous feedback to the ASIC and SiPh activities in order to guide technical choices and overall path

EP R&D WP6 High Speed Links

FPGA based demonstrators (left: Xilinx Virtex/AMD) *Ultrascale+, right: Intel Stratix 10)*

Modulation formats

- Non-Return to Zero (NRZ) vs 4-level Pulse Amplitude Modulation (PAM4)
 - Optical physical layer is SNR-limited at both 28 Gbps NRZ and 56 Gbps PAM4
 - Strong FEC schemes are needed to reach errors rates of below 10⁻⁹
 - This is particularly important for PAM4, which comes with an 11-13 dB Signal-to-Noise Ratio (SNR) penalty.

EP R&D WP6 High Speed Links

https://www.linkedin.com/pulse/100g-qsfp28-400g-qsfp56-dd-sean-davies/

- 25GBaud = 25Gbps • (NRZ: Bitrate = Baudrate)
- Larger ER (Extinction Ratio)
- Larger "Eye" opening
- Simpler signaling (2 states in twice the time)

- 50GBaud = 100Gbps (PAM4: Bitrate = 2 x Baudrate)
- Smaller ER (Only "Outer ER" defined)
- Smaller "Eye" opening
- More complex (4 states in half the time)

Electrical

Forward Error Correction modelling

- Reed-Solomon (RS) codes studied for future implementation
- Mathematical modelling of custom FEC candidates for 56 Gbps PAM4
 - compared to the IEEE std. to check validity
- Comparative analysis of the performance of future RSbased FEC schemes to determine the impact of various key parameters
 - symbol number and size
 - correction power/complexity

EP R&D

FEC implementation

PAM4 stds. do not impose a FEC scheme

- IEEE KP4 currently most popular
 - Reed-Solomon RS(544,514), corrects up to 15 10-bit symbols
 - Estimated coding gain of 6.1 dB
 - Hardware-IP for both Intel and Xilinx eases implementation
 - Decoding latency "long", not considered as a criterion for now
- Both transmission (ASIC) and reception (Backend) implemented
 - Hard-IP blocks in FPGAs
 - COTS optical transceiver modules
- Full chain was studied in loopback to assess:
 - Coding gain
 - Latency
 - 460 ns including a few meters of fibre.
 - KP4 frame is already responsible for 97 ns latency, even without considering the decoding process.

Bit Error Rate of the KP4 PAM-4 link *implemented in WP6 proof of concept*

jan.troska@cern.ch

beed	Links

Data-rate constraints

- Data transmission synchronous with the LHC collision rate (40.079 MHz) would require operating a PAM4 link at a non-IEEE standard rate (53.125 Gb/s)
- Investigations showed that
 - FPGA transceivers seem to tolerate large rate variations,
 - Most PAM4 transceivers have a very narrow range of data rates $(< \pm 500 \text{ ppm})$ which does not cover any integer multiples of the Bunch Clock frequency (i.e. 1325 or 1326 times 40.079 MHz).
- This would preclude the traditional FE approach in HEP of using synchronous systems operating at a multiple of the bunch clock frequency
 - A Bunch-clock synchronous interface model for a disruptive link type based on asynchronous PAM-4 transmission is being evaluated in VHDL
 - A study of the optical transceiver market to identify modules that allow their Clock and Data Recovery (CDR) circuits to be bypassed

jan.troska@cern.ch

Study of the optical transceiver market

- quarter and early adopters (GAFAM) implement own standards
 - standardised slower development
- trends
 - 56G PAM4 modules: still evolving; inflexible line rates; expensive; FEC required

The market is still rapidly evolving, new 'standards' are published every

• Manufacturers have two development paths: single source not-interoperable fast-track; and IEEE

Overall, this leads to a 'zoo' of module types, from which we distilled some

• 28G NRZ modules: more stable; flexible line rates possible; less expensive; possibly lighter FEC • Tx-side is most expensive and not needed in a typical FE link for HEP: possible customisation? Most transceivers operate in O-band (~1310 nm): re-target SiPh efforts to this wavelength

Introduction and ASIC roadmap DART28 Test Chip DART28NRZ High Speed Transmitter ASIC Conclusions

ASIC design

EP R&D WP6 High Speed Links

ASIC Roadmap

beed	Link	S

DART28 (Demonstrator ASIC for Radiation-Tolerant Transmitter in 28nm)

Goals:

- Demonstration of a NRZ transmitter
 - Using embedded data generators
- Radiation hardness
- SiPh PICs co-integration
- Flexible test structure

Chip architecture:

- Four high speed transmitters (HST) blocks:
 - Two 100 Ω line drivers
 - Two ring modulator drivers
- Data generators (DG)
- IO pads:
 - High speed signals
 - **Control signals**

DART28NRZ

jan.troska@cern.ch

Ground

SLVS

Electrical high speed transmission using a 100 Ω transmission line:

- Functional testing
- Performance characterization across voltage/ temperature
- Tests in radiation environment:
 - TID (X-ray)
 - SEU (Heavy Ion / Laser)

beed	Lin	ks

Electrical high speed transmission using a 100 Ω transmission line:

- Functional testing
- Performance characterization across voltage/temperature
- Tests in radiation environment:
 - TID (X-ray)
 - SEU (Heavy Ion / Laser)

Optical high speed transmitter – single channel:

• Demonstrate SiPh integration, end-to-end optical link

beed	Lin	ks

Electrical high speed transmission using a 100 Ω transmission line:

- Functional testing
- Performance characterization across voltage/temperature
- Tests in radiation environment:
 - TID (X-ray)
 - SEU (Heavy Ion / Laser)

Optical high speed transmitter – single channel:

Demonstrate SiPh integration, end-to-end optical link

Optical high speed transmitter – dual channel Wavelength-division multiplexing (WDM):

Demonstrate two NRZ links on one fiber using existing PICv2

beed	Lin	ks

DART28NRZ High Speed Transmitter

Structure of the high speed transmitter path:

- Data path
- High-frequency PLL
- Clock generation
- High-speed Serializer
- Output driver

beed	Lin	ks

High Speed Transmitter – data path

Data path structure:

- Scrambler for DC balancing of data
- Forward error correction (FEC): Reed Solomon (31, 29) code
- Interleaver to improve burst error resiliency
- Accepts 560 user data bits per frame
- Produces 640 output data bits per frame
- Payload bit rate: 22.44 Gbps

Integrated Design-for-Test features:

- PRBS / fixed pattern generation
- Error injection
- Flag injection (for latency measurements)

beed	Lin	ks

HST – PLL + clock generation system

PLL provides high-speed and low jitter clock and it is accompanied by a clock generation system.

Design considerations:

- A half-rate serializer requires generation of 12.8 GHz clock
- NRZ transmitter uses highly synchronous clocking architecture:
 - $f_{LHC} \times 640 \approx 25.650 \text{ Gbps} (1 \text{ UI} \approx 40 \text{ ps})$
- Stringent jitter requirement: below 1 ps rms
- LC oscillator for low-jitter local clock generation
 - All-Digital PLL architecture (minimizing required) analog circuitry)
- TMR dividers shared between PLL and serializer

EP R&D WP6 High Sp

Design challenges: Clock duty-cycle distortion

- Specification for NRZ: 0.035 UI (~1.36 ps)
- (PVT) variations and TID

Adopted solution:

Digital Duty Cycle Adjustment (DCA):

- Drive strength adjustable inverter stages
- On-chip measurement and control

EP R&D

HST – Serialiser

The serializer converts parallel data into high speed serial data stream.

It consists of:

- Low-speed serializer (640:20), 40 MHz 1.28 GHz
 - Digital design flow methodology used
- High-speed serializer (20:1), 1.28 GHz 12.8 GHz
 - High data rate
 - Full-custom design flow used
 - Careful design of clock and data distribution, balanced layout, etc
 - Stringent specifications for duty cycle distortion and evenodd jitter performance (<1.36 ps)

EP R&D WP6 High Sp

mateusz.baszczyk@cern.ch

beed	Lin	ks

Design challenges: Sub-threshold leakage

Transistor is never in an off state which implies a leakage current loff

- PVT variation:
 - I_{off} can change over 3 orders of magnitude
- Radiation:
 - I_{off} increases with TID also up to 3 orders of magnitude

An example of the leakage at the system level:

- A dynamic true single-phase clocked (TSPC) flip-flop:
 - Faster than conventional FF
 - Used in high speed part of HST
 - Sensitive to leakage Q outputs should be a square signal

EP R&D WP6 High Sp

Adopted solution:

Inclusion of gated inverter feedback

HST – Ring Modulator Driver

Architecture:

- biasing of the ring modulator

beed	Lin	ks	
erial ata			
	64	.0	

Design Challenges: output driver

100 Ω line driver with a preemphasis circuit: increasing the output bandwidth while minimizing the intersymbol interference (ISI) in bandwidth-limited channels

Ring modulator driver: maximizing the driving amplitude, while limiting forward-bias of the ring modulator:

PAD

ESC

EP R&D WP6 High Speed Links

Eye diagram with pre-emphasis @32Gbps

Status of DART28NRZ Test Chip

 Submission target: end of 2022 (depends on mini@sic schedule) Design status:

Very good progress. Large experience gained:

- Requirements (data rates)
- Performance of the technology:
 - Many thousands of design rules
 - Heavy verification: Large PVT variations, Electro-Migration (EM), Resistive Voltage drop (IR)
 - Low supply voltage (challenge for the opto-electronics circuits driver)
- Design process / PDK (both analog and digital flow)

EP R&D WP6 High Sp

mateusz.baszczyk@cern.ch

beed	Link	S

Opto: Silicon Photonics

Overview Temperature control System demonstrators Radiation effects

EP R&D

WP6 High Speed Links

Silicon Photonics Overview

- Exploiting full potential of most recent Photonic Integrated Circuit (PIC)

EP R&D WP6 High Speed Links

Wavelength control with Micro-heaters

- Ring modulators are highly selective wavelength filters
 - Centre wavelength depends on environmental and fabrication parameters
 - Need mechanism to control individual rings to the wavelength we would like to modulate

stive heating elements patterned directly on top of mg, providing very localised control of the silicon temperature and thus the refractive index

• Monitored via a built-in photodiode

beed	Lin	ks

Control system for wavelength stabilisation

- Goal is to create a system that can automatically lock a given ring to the input light of a given wavelength
 - Eventually this controller should be integrated into the ring modulator driver ASIC (c.f. DART28)
- First need to determine the parameters of the controller
 - Implemented a system based on lab instruments
 - Measurement of Photodiode Current
 - Steering of Heater current
- Have demonstrated reasonable stability
 - Tested by changing the input wavelength, which is equivalent to changing device temperature but more easily controlled

beed	Lin	ks

Performance Demo: lpGBT as driver

- First system demonstration carried out using IpGBT as driver while dedicated ring modulator driver is being designed
 - CML output driver of IpGBT sufficient for driving at 10.24 Gb/s

 Timing/Control path from Back-end to Front-end also demonstrated using existing ASIC (GBTIA) coupled to integrated photodiode Reported at TWEPP by Thenia Prousalidi

beed	Li	n	ks

Performance Demo: 25/50G

- Higher-speed system demonstration possible with commercial modulator drivers and newly acquired test instrumentation
 - Validates performance of the ring modulator designs that achieve good radiation hardness
 - Allows the understanding of the relative performance of different modulator types
 - e.g. O-band (~1310 nm) vs C-band (~1550 nm)
- Successful test required the design of a carrier PCB with high speed trace routing • Experience gained will later be valuable also for ASIC
 - testing
- PAM4 is clearly challenging for optoelectronics in terms of SNR
 - Trade-off between optical SNR and electrical driver speed

beed	Li	n	ks
Jeeu	LI		ND

Radiation Testing

- Photonics devices, carry out extensive testing of effects
 - X-ray at CERN for Total Dose, Neutrons at UCL (B) for Total Fluence

CERN X-ray facility

Since we do not yet understand all subtleties of radiation effects of Silicon

beed	Lir	nks

Total Fluence effect on integrated PDs

Photodiodes are generally more sensitive to displacement damage effects, being bulk devices

- Excellent performance
 - Better than existing discrete PDs (InGaAs)
 - Most recent process changes have been beneficial in terms of radiation tolerance

UCL Cyclotron neutron beamline with setup in place

jan.troska@cern.ch

beed	Lir	ıks

- 1.2 1.1 - 1.0 0.9 0.8 0.7 0.6
- 0.4
- 0.3
- 0.2
- 0.1
- 0.0

Effect of Temperature on Dose Effects

- Ring Modulators most sensitive to Total Dose
- irradiation
 - First demonstration of this temperature effect in Silicon Photonics devices
 - reported at RADECS 2021
- Will be subject of further irradiation studies in order to understand the non-linear nature of the effect
 - Ultimately parameterise the effect and build into radiation damage model

EP R&D WP6 High Speed Links

Micro-heaters built-in to PIC v2 allow localised temperature control during

Final Summary

- - Radiation tolerance
 - Higher line rate
 - COTS standards vs HEP
 - Async links
 - Low Mass, Low Power, Low Cost
- First link demonstrators have been operated
 - FPGA-based for line rate and FEC studies
 - Instrumentation-based for Silicon Photonics components
 - Including first thermal control of ring modulators, an important step to a robust system
- Work on providing building blocks for future application specific implementations is thus well advanced
 - Not a project goal to provide turn-key components for final applications

WP6 has produced much interesting R&D towards the implementation of future optical data transmission systems in line with the ECFA roadmap

jan.troska@cern.ch

beed	Link	S

Outlook

- be in co-integration and/or co-packaging
 - This is the path to ultimate low-power and low-mass
 - Every chip-to-chip interconnect burns (unnecessary) power in the interconnect capacitance
 - This implies
 - ASIC building blocks to be integrated in specific FE ASICs
 - Tight co-packaging of photonics with electronics
- as part of the initial project re-baselining
- future detector upgrade projects • e.g. LHCb, CMS

• Key to actually deploying this type of technology with maximum impact will

WP6 strongly suggests to re-instate the Packaging Task that was removed

Starting already to field questions regarding what might be possible from

jan.troska@cern.ch

