

WP 5 TECHNOLOGY EVALUATION

D. CERESA on behalf of EP R&D Work Package 5

WP5 TECHNOLOGY EVALUATION: WHAT IS IT?

WP5 TECHNOLOGY EVALUATION: THE TEAM(S)

CHIP DESIGN AND TESTING

GIULIO BORGHELLO (STAFF) DAVIDE CERESA (STAFF)

FRANCISCO PIERNAS DIAZ (TECH) RISTO PEJASINOVIC (FELL)

GIANMARIO BERGAMIN (EXT. EP-ESE-ME) ADITHYA PULLI (EXT. EP-ESE-ME)

JOINED EFFORT WITH WP5.2a TEAMS

NEW DESIGN SOLUTIONS

ALESSANDRO CARATELLI (STAFF) DAVIDE CERESA (STAFF) KOSTAS KLOUKINAS (STAFF)

MARCO ADORNO (FELL) JASHANDEEP DHALIWAL (TRAINEE) RISTO PEJASINOVIC (FELL)

WP5 TECHNOLOGY EVALUATION: TIMELINE

- TECHNOLOGIES EVALUATED AT TRANSISTOR LEVEL ON PROVIDED SAMPLES
- MAIN FOCUS ON PERFORMANCE
 AND RADIATION TOLERANCE
- 28 NM CMOS TECHNOLOGY SELECTED AS MAIN NODE FOR UPCOMING DEVELOPMENT

- TRANSISTOR LEVEL CHIP DESIGNED IN THE SELECTED TECHNOLOGY
- 3x DIGITAL-ON-TOP CHIPS DESIGNED FOR TECHNOLOGY BUILDING BLOCKS EVALUATION
- DESIGN METHODOLOGIES AND COMMON DESIGN PLATFORM DEVELOPED

- FUNCTIONAL TESTING OF TEST
 CHIPS
- RADIATION TESTING (TID AND SEE) OF TEST CHIP
- PREPARE TECHNOLOGY
 GUIDELINES FOR 28 NM
 RADIATION TOLERANT DESIGN

TOTAL IONIZIZING DOSE - TID - CHIP

A CHIP TO STUDY RADIATION EFFECT ON SINGLE TRANSISTORS IN THE HPC+ TECHNOLOGY FLAVOUR

7x probing arrays compatible for the ep-ese-me X-ray machine setup Different transistor flavors and variability arrays Design submitted on a mini@sic run in june 2021

TID CHIP LAYOUT

TRANSISTOR SIZING ARRAY

TID CHIP RESULTS

28 NM TECH. OUTPERFORM 65 NM AT HIGH TID (I GRAD):

- < -40% CONDUCTIVE CURRENT LOSS
- ONLY ×10 LEAKAGE CURRENT RESPECT 65 NM

WP5 TECHNOLOGY EVALUATION: DESIGN & IP BLOCK LEVEL

CHARACHTERIZE THE 28 NM TECHNOLOGY, EXPERIENCE THE DESIGN FLOW AND BUILD

AN IP BLOCK LIBRARY BEFORE THE DESIGN OF LARGE AND COMPLEX ASICS BEGINS

EXP28 CHIP SUITE: 3x DIGITAL-ON-TOP DESIGN

TOTAL IONIZING DOSE (TID) STUDIES:

- Ring Oscillator for standard cells
- Built-In-Self-Test for SRAM memories

SINGLE EVENT EFFECT (SEE) STUDIES:

- Vernier Delay line for Single Event Transient (SET)
- Flip-Flop matrixes for Single Event Upset (SEU)
- Functional SRAM test for SEE on memories

IP BLOCKS CHARACHTERIZATION

- Bandgap and Temperature sensor
- Digital-to- Analog Converted (DAC)
- Probe array for HV devices and resistors

2 mm	
2 mm	
E EXP28	
e ana	
<u> </u>	

Exp28: A COMMONTEST SYSTEM

<u>Credits:</u>

Interface board design by R. Pejasinovic Firmware development by R. Pejasinovic Carrier board design by F. Piernas Diaz Wire-bonding by CERN bonding lab

EXP28 TEST CHIP FAMILY:

SUBMITTED ON 5TH OF JANUARY 2022 RECEIVED IN MAY 2022

<u>Credits:</u> Wire-bonding by CERN bonding lab

POWER-UP AND CONFIGURATION TESTS PASSED ON ALL CHIPS PLAN FOR TESTING : FUNCTIONAL TESTING – MAY - JULY '22 TID TESTING – JULY - SEPTEMBER `22 SEE TESTING – SEPTEMBER - DECEMBER `22

RADNEXT APPLICATION ACCEPTED FOR HEAVY ION TESTING

FURTHER TEST UNDER DISCUSSION WITH R2E PROJECT

RING OSCILLATOR: TEST STRUCTURE

TOTAL IONIZING DOSE STUDY ON STANDARD CELL LIBRARIES:

I_{ON} VS TID MEASURED AS VARIATION OF FREQUENCY IN A RING-OSCILLATOR.

UN-BALANCING BETWEEN RISE AND FALLING TIME MEASURED WITH A DELAY CHAIN

TESTING FEATURES:

- INTERNAL COUNTERS ACCESSIBLE VIA 12C
- POWER GATING FOR SINGLE CELL CURRENT MEAS.
- EXTERNAL PSEUDO DIFFERENTIAL

MEASUREMENT

RING OSCILLATOR: PRE-RAD RESULTS

0	7TULVT30
I	7TSVT30
2	7TUHVT30
3	7TULVT35
4	7TSVT35
5	7TLVT40
6	7TSVT40
7	7TUHVT40
8	9TULVT30
9	9TSVT30
10	9TUHVT30
11	9TULVT35
12	9TSVT35
13	9TLVT40
14	9TSVT40
15	9TUHVT40
16	I2TULVT30
17	I 2TSVT30
18	I2TULVT35
19	I 2TSVT35
20	I2TLVT40
21	I2TSVT40
22	I2TUHVT40

12

RING OSCILLATOR: PRE-RAD RESULTS

0	7TULVT30
I	7TSVT30
2	7TUHVT30
3	7TULVT35
4	7TSVT35
5	7TLVT40
6	7TSVT40
7	7TUHVT40
8	9TULVT30
9	9TSVT30
10	9TUHVT30
11	9TULVT35
12	9TSVT35
13	9TLVT40
14	9TSVT40
15	9TUHVT40
16	I2TULVT30
17	I2TSVT30
18	I2TULVT35
19	I2TSVT35
20	I2TLVT40
21	I2TSVT40
22	I2TUHVT40

SRAM BUILT-IN-SELF-TEST: TEST STRUCTURE

- BIST REQUIRED TO COPE WITH HIGH SPEED MEMORY (ACCESS TIME ~ FEW NS)
- FOUNDRY MEMORY INCLUDES SUB-MINIMUM TRANSISTOR SIZE
- DIFFERENT TYPE OF MEMORY TESTED (SINGLE/DUAL PORT, STANDARD/ULTRA-HIGH DENSITY)

WHAT'S NEXT?

TECHNOLOGY EVALUATION AND DEVELOPMENT KEEP GOING DEPENDS ON TESTING RESULTS AND TECHNOLOGY AVAILABILITY:

- SRAM CUSTOM DEVELOPMENT
- EVALUATION OF NEW TECHNOLOGY AS 22 NM FTX-SOI, FINFET,...

EXPLORE NEW DESIGN SOLUTION

TRANSITION FROM ON-CHIP CONFIGURABILITY TO PROGRAMMABILITY:

- SYSTEM-ON-CHIP DESIGN SOLUTION
- NEW FIELD OF RESEARCH FOR EP-ESE-ME
- APPLY TO SEVERAL APPLICATIONS

RADIATION TOLERANT SYSTEM-ON-CHIP ECOSYSTEM FOR HEP APPLICATION

Two complementary field of research:

- STANDARDIZED SOLITION
- OPEN SOURCE
- FULLY RADIATION TOLERANT
- ECO SYSTEM FOR THE COMMUNITY
 - RT SOC IP BLOCKS
 - RT SOC INTERCONNECT

- APPLICATION SPECIFIC INSTRUCTION SET
 PROCESSOR
- TOOL BASED ASIP DESIGNER BY SYNOPSIS
- CUSTOM ISA
- CUSTOM MICROARCHITECTURE

RISC-V BASED SOC ECOSYSTEM

- SURVEY OF DIFFERENT ARCHITECTURES
- EXPLORED SOLUTIONS:
 - ETH PULP-PLATFORM
 - CHISEL BASED ROCKET-CHIP
 - PICORV32
- EMPLOY RADIATION HARDENING DESIGN TECHNIQUES
- DEMONSTRATOR ASIC IS IN DEVELOPMENT

slide by Alessandro Caratelli

- OPEN SOURCE ISA, MANY OPEN SOURCE IMPLEMENTATIONS
- ISA DESIGNED FOR SIMPLICITY, "EASY" TO IMPLEMENT

•

.

- VERY LIKELY TO TAKE OVER VARIOUS AREAS OF CPU MARKET
- FUNDED AND DEVELOPED BY MANY BIG COMPANIES
- NO LICENSE LIMITATION, NO VENDOR ROYALTIES
- PROFIT FROM COMMUNITY CONTRIBUTIONS NB: NOT ALL RISCV CORES ARE WITH AN OPEN LICENSE

slide by Alessandro Caratelli

ON-CHIP DATA PROCESSING: A FEASIBILITY STUDY

PROVIDE PHYSICS DATA AND RUN EXISTING ALGORITHM ON A CUSTOMIZED PROCESSOR:

- TRAINEE STARTED ON FEBRUARY 2022
- ASIP DESIGNER LICENSE OBTAINED IN MARCH 2022
- COLLABORATION STARTED IN MAY 2022 THANKS M. CAMPBELL

WORKFLOW IN PLACE TO STUDY THE FEASIBILITY OF ON-CHIP DATA PROCESSING

CONCLUSIONS

SIGNIFICANT PROGRESS ON 28 NM TECHNOLOGY EVALUATION IN THE LAST YEAR :

TID CHIP SUBMITTED AND CHARACHTERIZED

PROVIDES RADIATION TOLERANCE PERFORMANCE AT TRANSISTOR LEVEL

EXP28 SUITE SUBMITTED IN DECEMBER `22 - TESTING (STARTED IN MAY `22) WILL PROVIDE:

TID AND SEE EVALUATION OF DIGITAL BUILDING BLOCKS (STD. CELL AND SRAM)

CHARACHTERIZATION OF IP BLOCKS

DESIGN GUIDELINES FOR ANALOG AND DIGITAL RAD-TOL DESIGN

TRANSITION FROM TECH. EVALUATION TO INVESTIGATION OF NEW DESIGN SOLUTION IS STARTED: RISC-V BASED SYSTEM-ON-CHIP SOLUTION FOR CONTROL AND MONITORING APPLICATION CUSTOM PROCESSOR DESIGN SOLUTION FOR ON-CHIP DATA PROCESSING APPLICATION

Thanks!

DAVIDE CERESA