# FastML: Application and Opportunities in Nuclear Physics (NP)

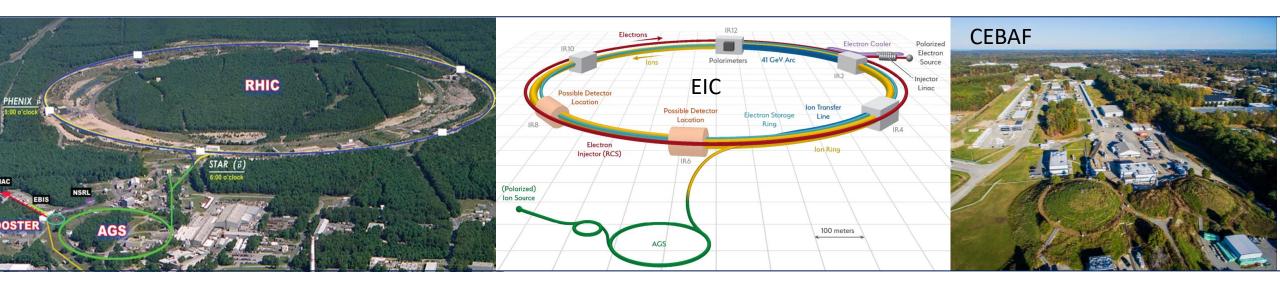
Outline: 
Opportunities in NP Exp. Faculties 
Sample applications of Realtime AI 
Summary

#### Jin Huang

**Brookhaven National Lab** 



### **Nuclear Physics Facilities in focus for this talk**



Examples in focus of this talk: RHIC (sPHENIX), CEBAF (BDX, GLUX, SoLID), EIC (EPIC)

- This talk is an in-complete review of the field, see also experiments including at LHC (LHCb, ALICE, AMBER), at FAIR (CBM)
- FastML application with strong connection to the evolution to Streaming DAQ for next generation NP experiment
- See also Streaming Readout Workshop series [link], AI4EIC series [link]

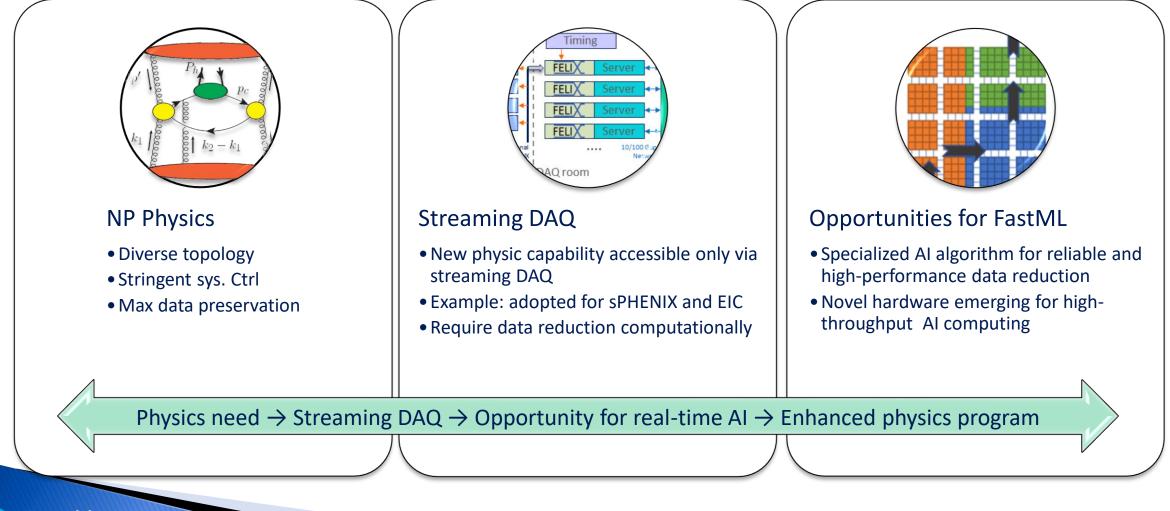
#### Nuclear collider experiments: unique real-time system challenges leads to streaming DAQ

|                                 | EIC                                               | RHIC                                              | LHC → HL-LHC                                                     |
|---------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|
| Collision species               | $\vec{e} + \vec{p}, \vec{e} + A$                  | $\vec{p} + \vec{p}/A$ , $A + A$                   | p + p/A, $A + A$                                                 |
| Top x-N C.M. energy             | 140 GeV                                           | 510 GeV                                           | 13 TeV                                                           |
| Bunch spacing                   | 10 ns                                             | 100 ns                                            | 25 ns                                                            |
| Peak x-N luminosity             | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> | $10^{34} \rightarrow 10^{35}  \mathrm{cm}^{-2}  \mathrm{s}^{-1}$ |
| x-N cross section               | 50 μb                                             | 40 mb                                             | 80 mb                                                            |
| Top collision rate              | 500 kHz                                           | 10 MHz                                            | 1-6 GHz                                                          |
| dN <sub>ch</sub> /dη in p+p/e+p | 0.1-Few                                           | ~3                                                | ~6                                                               |
| Charged particle rate           | 4M N <sub>ch</sub> /s                             | 60M <i>N</i> <sub>ch</sub> /s                     | 30G+ <i>N</i> <sub>ch</sub> /s                                   |

- Signal data rate is moderate  $\rightarrow$  possible to streaming recording all collision signal
- But events are precious and have diverse topology  $\rightarrow$  hard to trigger on all process
- Background and systematic control is crucial → avoiding a trigger bias; reliable data reduction

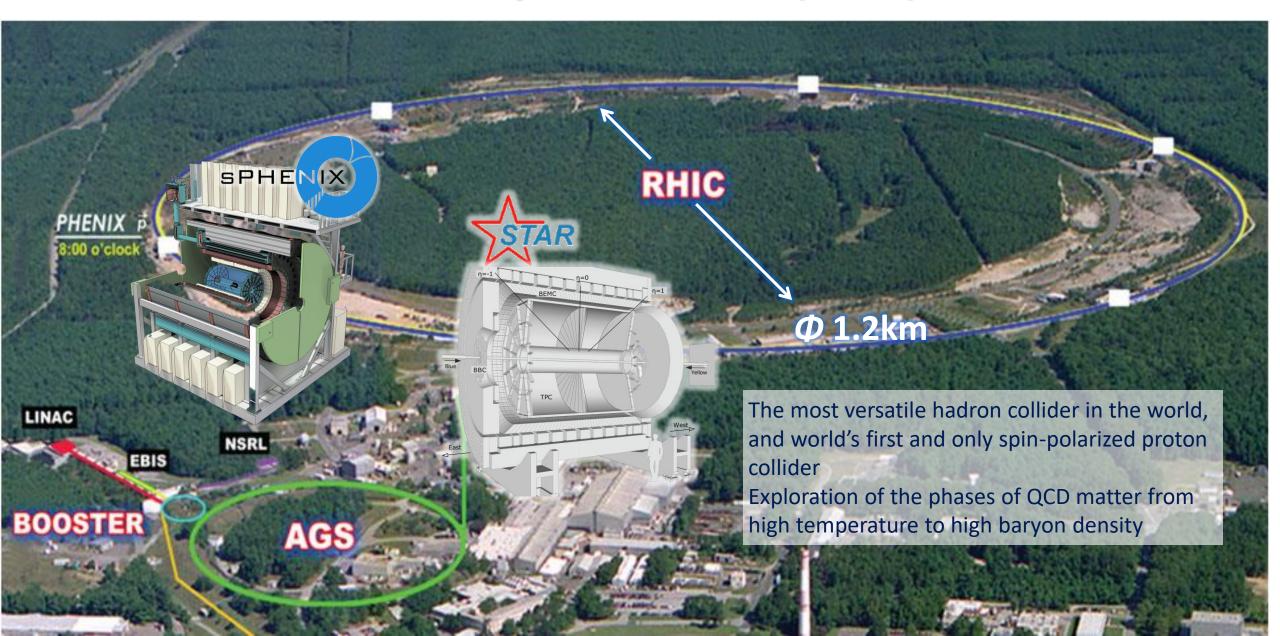
#### **Streaming DAQ and real-time AI:**

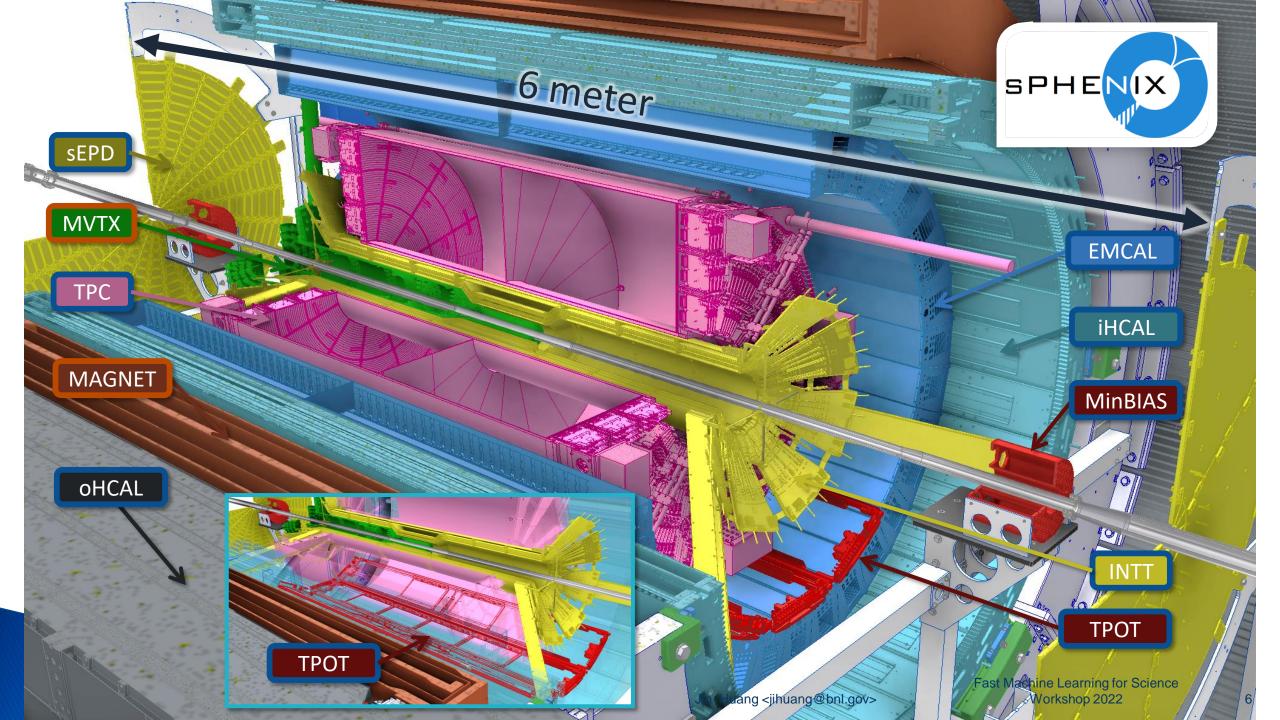
#### A new and paradigm shift for experiments in next NP LRP





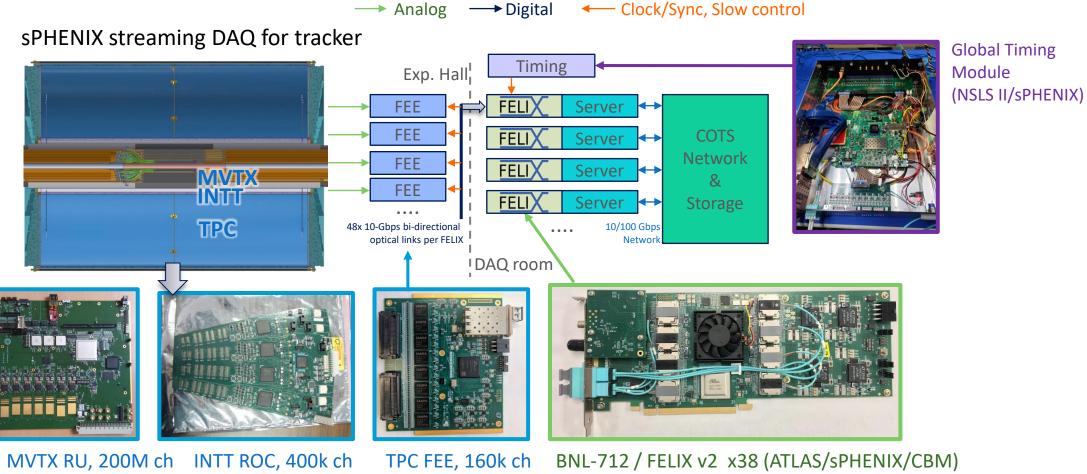
#### **Relativistic Heavy Ion Collider (RHIC) in 2023+**





#### sPHENIX installation on going in RHIC IR8 Data taking start in spring 2023!

#### **Streaming readout electronics for sPHENIX tracker**

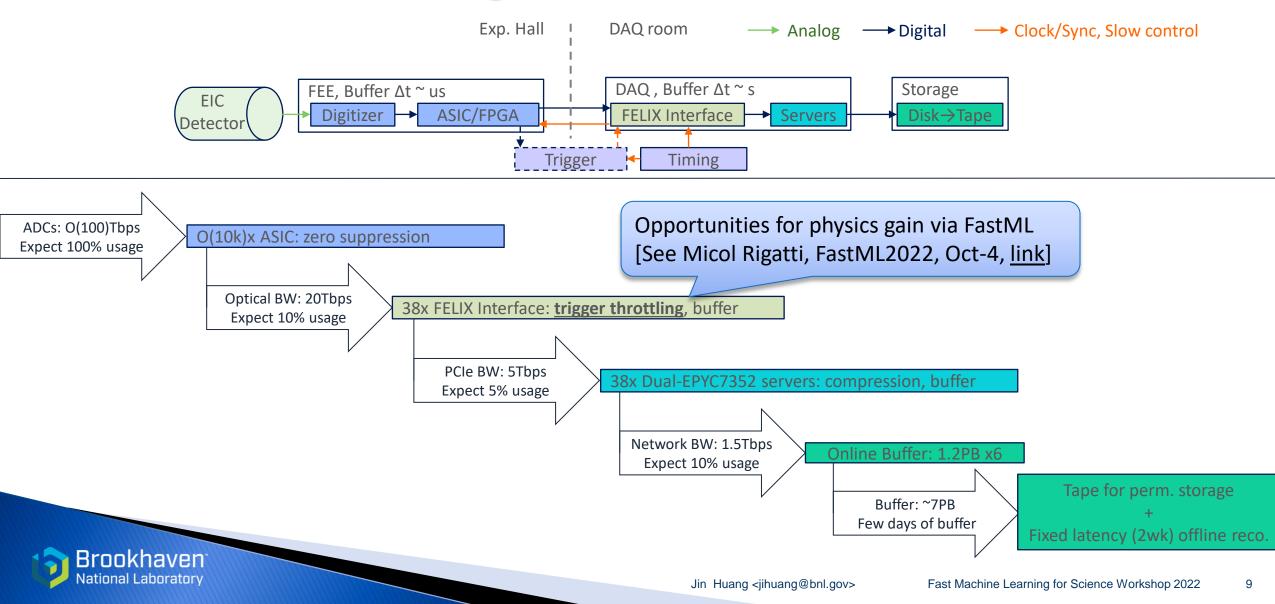


ALPIDE (ALICE/SPHENIX), FPHX (PHENIX)

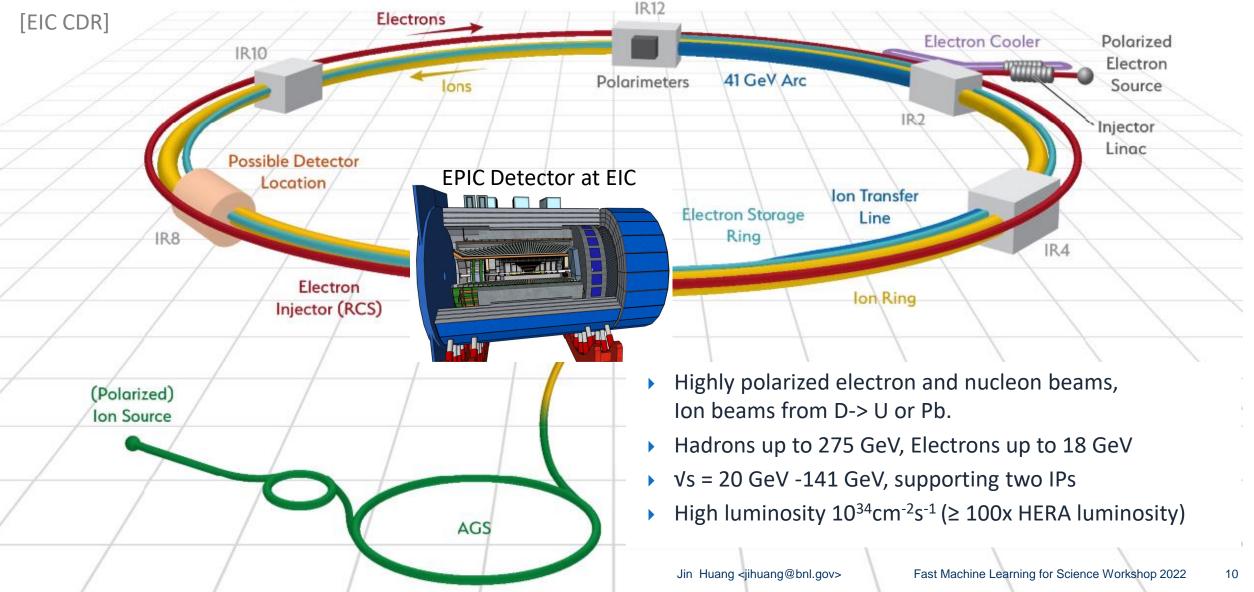
SAMPAv5 (ALICE/sPHENIX) FELIX Ref: <u>10.1109/tim.2019.2947972</u> Similar role as PICe40 in LHCb / ALICE

Brookhaven National Laboratory

#### sPHENIX Streaming data flow



#### RHIC transition to the Electron Ion Collider (EIC) CD-1 Approval in 2021, Science Phase in 2030+

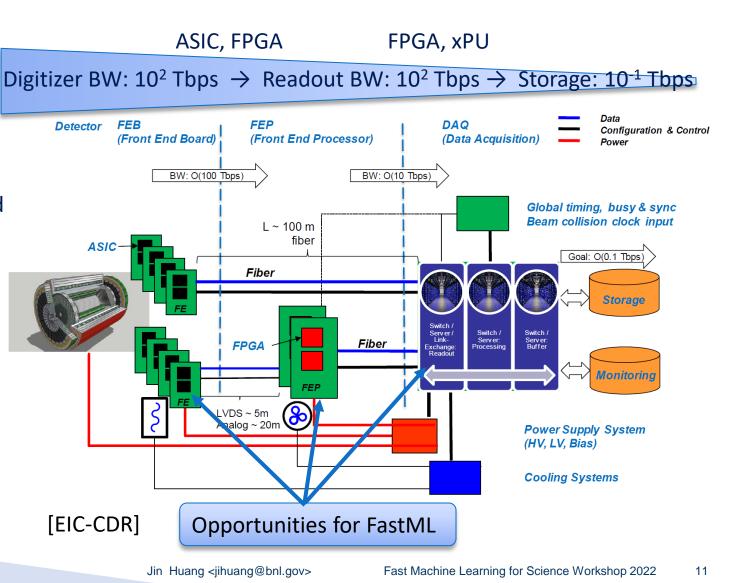


# **Streaming readout data flow: EIC**

#### EIC streaming DAQ

Brookhaven National Laboratory

- → Triggerless readout front-end (buffer length : µs)
- → DAQ interface to commodity computing
  - (FELIX-type interface as the candidate) Background filter if excessive background rate
- → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
- → Online monitoring and calibration (latency : minutes)
- → Final Collision event tagging in offline production (latency : days+)

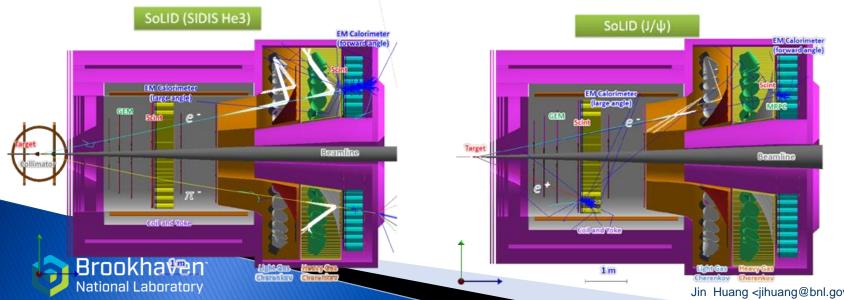


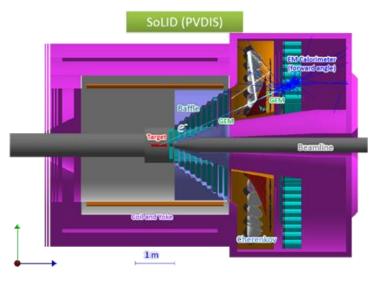
#### **Solid Contractions of Solution S**

[Zein-Eddine Meziani, 2022 QCD Town hall, link]



- SoLID is proposed to fully utilize the intensity frontier at JLab
  - 10<sup>37</sup>-10<sup>39</sup> /cm<sup>2</sup>/s + large acceptance fixed target experiment with electron beam
  - DOE Science Review in 2021
- Opportunities for FastML:
  - Clustering and particle ID on waveform digitizer/FPGA readout pipeline
  - Tracking based trigger / data filtering





## Al in streaming readout DAQ

#### Main challenge: data reduction

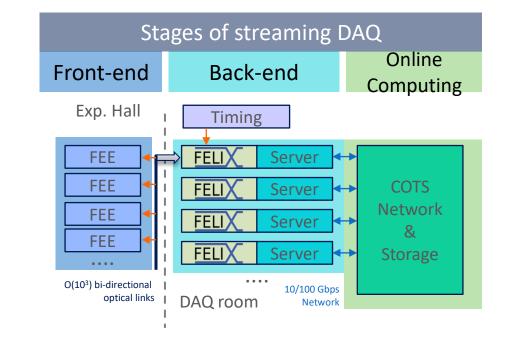
- Traditional DAQ: triggering was the main method of data reduction, assisted by high level triggering/reconstruction, compression
- Streaming DAQ need to reduce data computationally: zero-suppression, feature building, lossy compression

#### Opportunities for Real-time AI

- Emphasize on reliable data reduction, applicable at each stages of streaming DAQ: <u>Front-end</u> <u>electronics</u>, <u>Readout Back-end</u>, <u>Online computing</u>
- Data quality monitoring, fast calibration/reconstruction/ feedback
  - Could use "traditional" computing

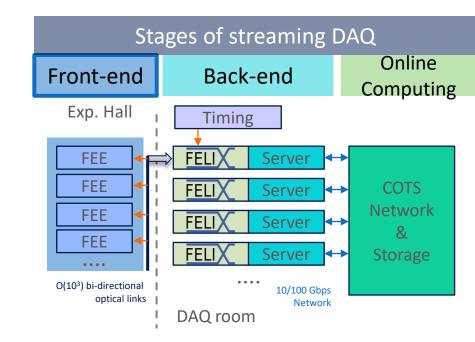
Brookhaven National Laboratory

Not focus of this talk, nonetheless important for NP experiments



## **Streaming DAQ stage 1: Front-end electronics**

- Perform digitization (ADC, TDC, pixel readout)
  - Common data reduction strategy to immediately apply zero-suppression
- FastML opportunities:
  - Improved zero-suppression, e.g. small signal recovery
  - Feature building (example in next slides)
  - Compression (example in later slides)
- Target hardware: ASIC, (smaller) FPGAs
  - Common requirement of low-power consumption, radiation tolerant

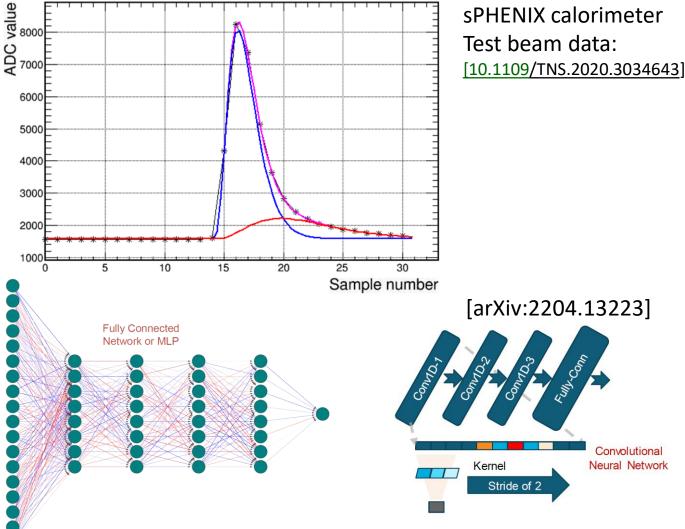




### ADC time series → feature of amplitude and time

- Wave form digitizer is popular, output data in ADC time series
- In the front-end, NN can be used to extra features such as amplitude and time of arrival
- Fit limited resource in FEE FPGA or ASIC: Emphasizes on quantizedaware training training and pruning

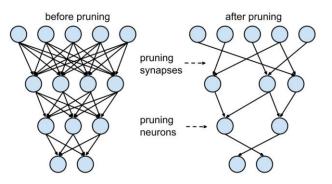
OOKhaven



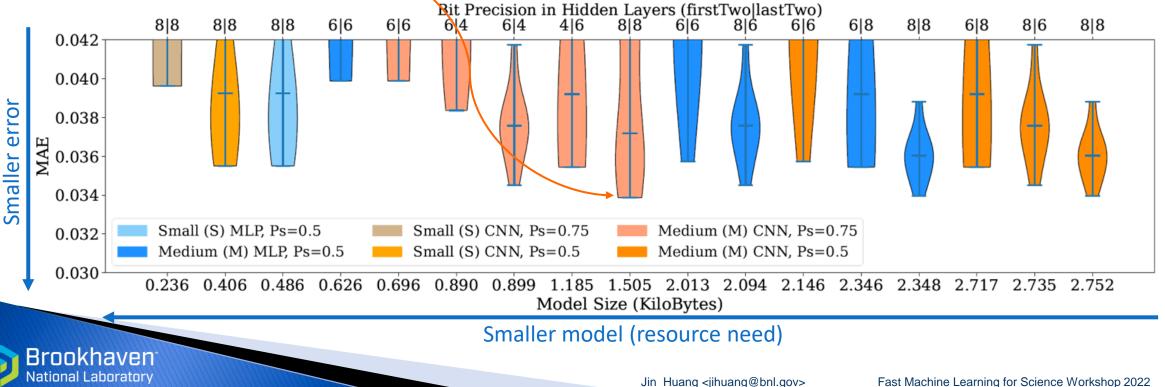
#### **Pruning + Variable Bit Quantization-aware Training**

[S. Miryala et al 2022 JINST 17 C01039]

- Simulated LGAD waveform data
- Highly pruned (sparsity=0.75) CNN with 8bit internal precision strikes good performance (smaller error) and small model size



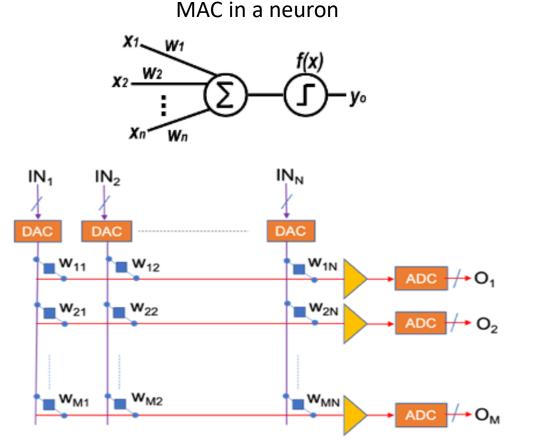
16



# Novel hardware: in-memory computing

[S. Miryala , CPAD21, <u>link</u>]

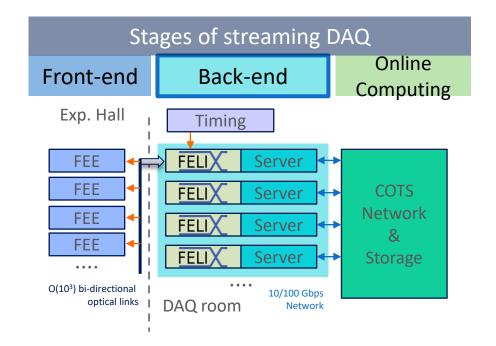
- One viable AI-target hardware in FEE including digital processing in ASIC and FPGAs
- New opportunity emerges to perform in-memory computing that is low latency and energy efficient
- Example is Memristor-based crossbar arrays that perform Multiply & Accumulate (MAC) in one cycle



Memristor crossbar array, a Non-Von Neumann architecture for in-memory computing of neural networks

### Streaming DAQ stage 2: Readout back-end

- Perform data aggregation and flow control
  - Common strategy include optical data receiver in large FPGA, routing data to server memory
- FastML opportunities:
  - Higher level feature building
  - Selection of interesting time slices, background/noise rejection
  - Two example projects in next slides
- Target hardware: large-scale FPGAs

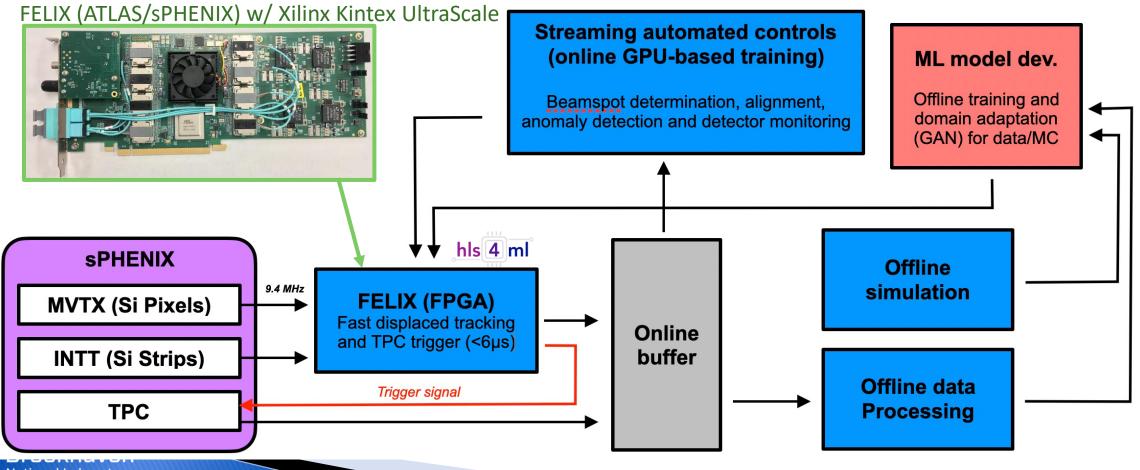


Brookhaven<sup>-</sup> National Laboratory

#### FPGA based trigger/data filter for sPHENIX and EIC

[See Micol Rigatti, FastML2022, Oct-4, link]

DOE Funded project on streaming readout data reconstruction on FGPA, initiated by LANL, MIT, FNAL and NJIT

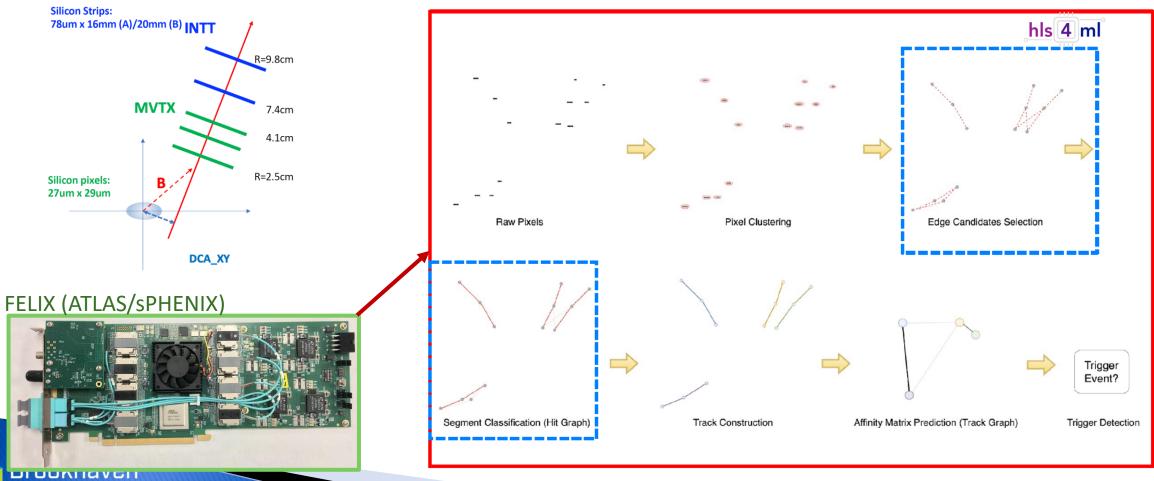


National Laboratory

#### FPGA based trigger/data filter for sPHENIX and EIC

[See Micol Rigatti, FastML2022, Oct-4, link]

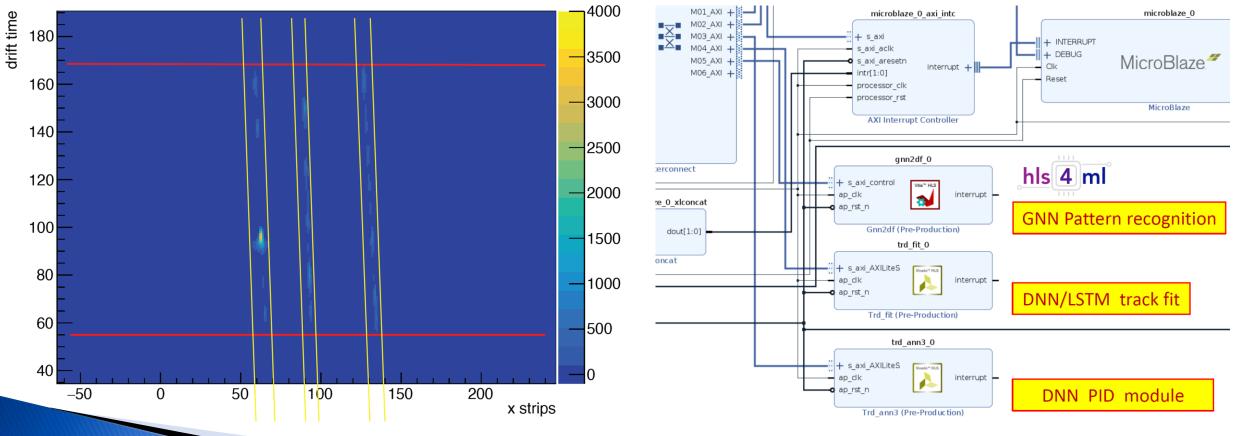
Produce real-time selection of HF events: hit input  $\rightarrow$  clustering  $\rightarrow$  seeding  $\rightarrow$  trak reco  $\rightarrow$  displaced vertex tagger



National Laboratory

## **Example 2: GEM TRD tracking/PID**

[S. Furletov, IEEE RT22, <u>link</u>]



#### GEM TRD tracks

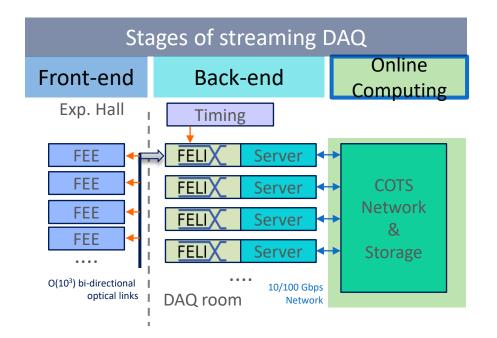
Brookhaven<sup>-</sup> National Laboratory

Jin Huang <jihuang@bnl.gov>

GNN Pattern reco, track fit and PID on FPGA test bench

# **Streaming DAQ stage 3: Online computing**

- Online computing is an integral part of streaming DAQ
  - Blending the boundary of online/offline computing
- FastML opportunities:
  - Lossy compression
  - Noise and background filtering
  - Higher level reconstruction
- Target hardware:
  - Traditional computing: CPU, GPU
  - Novel AI Accelerators (next slides)

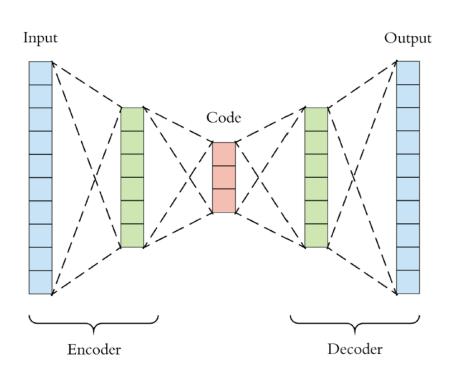


Brookhaven National Laboratory

#### Lossy compression of data, noise filtering

 Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction

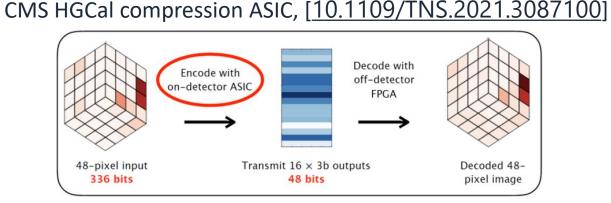
Simple auto-encode neural network





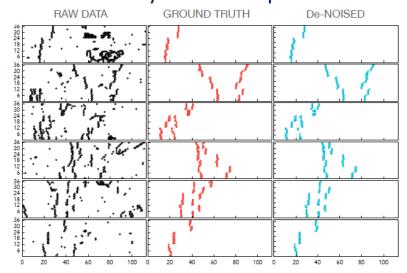
### Lossy compression of data, noise filtering

- Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction
- Same network architecture can be adopted with supervised learning to filter out noise: further data reduction, speed up reconstruction
- See also in CMS HGCal ASIC, CLAS12 tracker offline reco.



tional Laboratory





### Data of time projection tracker at sPHENIX

30

Busiest event in sPHENIX TPC

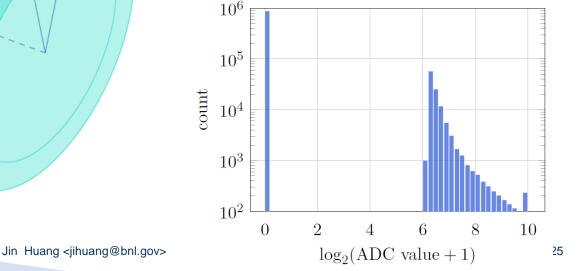
Brookhaven

Laboratory

3D X-Y-Time time frame at 50Tbps prior to zero-suppression

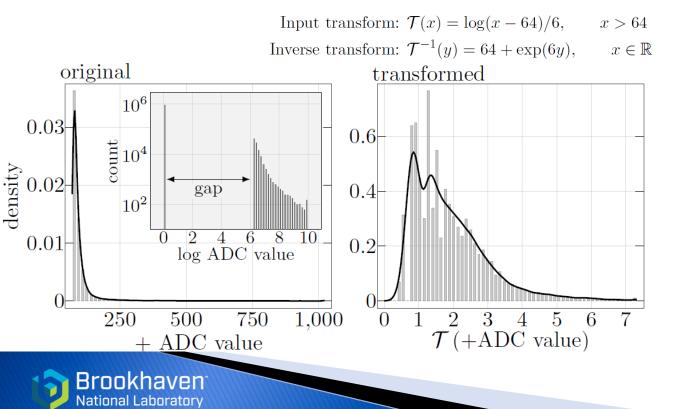
10% central Au + Au collision with 170kHz pile up

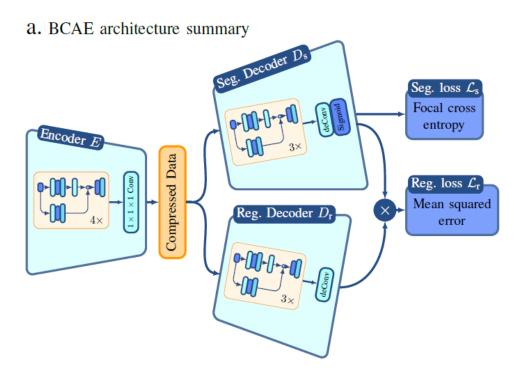
Data frame for 1/12 azimuth sector shown here



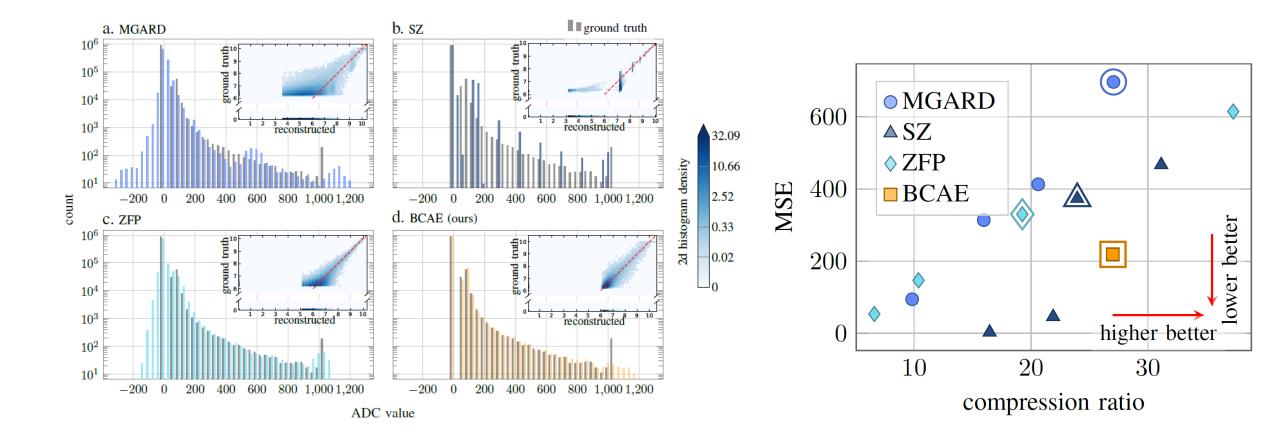
## **Bicephalous Convolutional Auto-Encoder (BCAE) and input transform** [arXiv:2111.05423]

- Input transform: fill in the zero-suppression gap and make ADC distribution much less steep
- Bicephalous decoder: +classification decoder to note the zero-suppressed ADC voxels and +noise voxels in TPC





#### **Comparison with existing algorithm** [arXiv:2111.05423]





### **BCAE Compressor with noise filtering**

[Y. Huang, IEEE RT22, link]

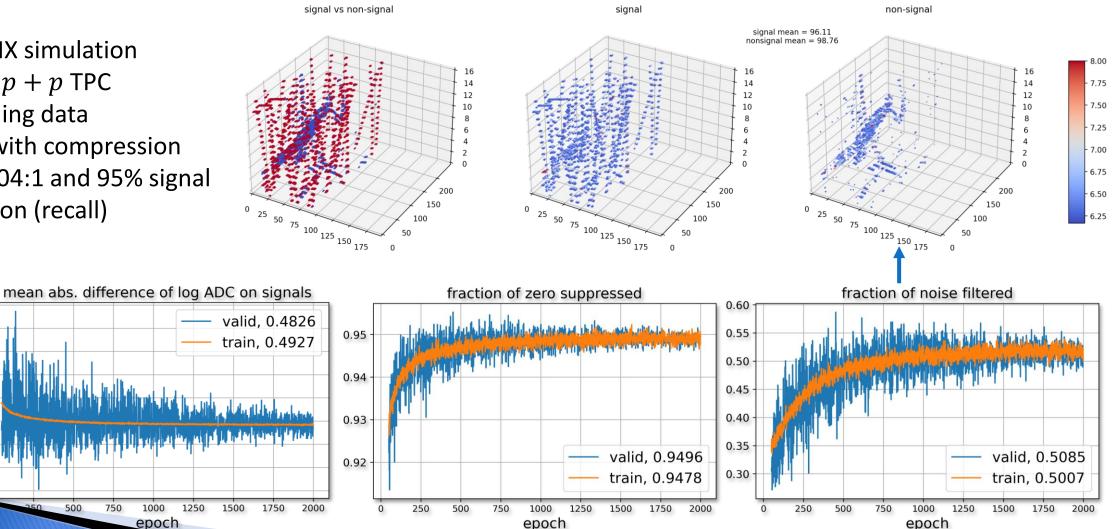
sPHENIX simulation 3 MHz p + p TPCstreaming data BCAE with compression ratio 204:1 and 95% signal retention (recall)

500

750

1000

epoch



Brookhaven ational Laboratory

0.75 -

0.70

0.65

0.60

0.55

0.50 0.45

0.40

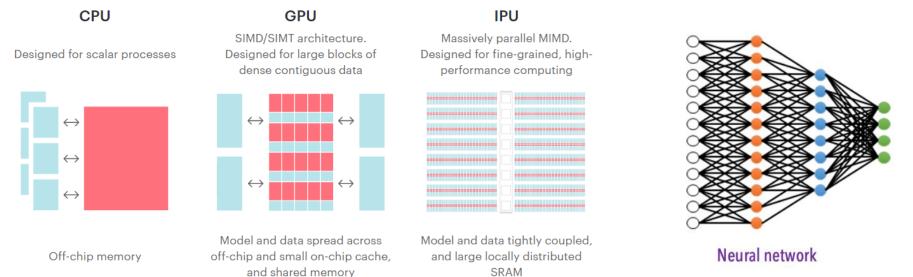
0.35

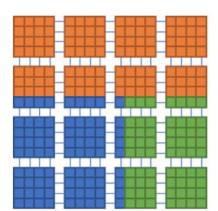
### **Novel AI Accelerators for streaming DAQ**

- A new family of AI chips is emerging with non-von Neumann Architectures
  - Designed for NN computing, similarities to ML on FPGA
  - Massive on-chip activation/weight storage on sRAM
  - Good integration with popular AI tools

[GraphCore Web, link]

- Energy efficient and high throughput
- Significant throughput gain with testing of BCAE on Graphcore IPUs, a Dataflow Architectures processor for AI application





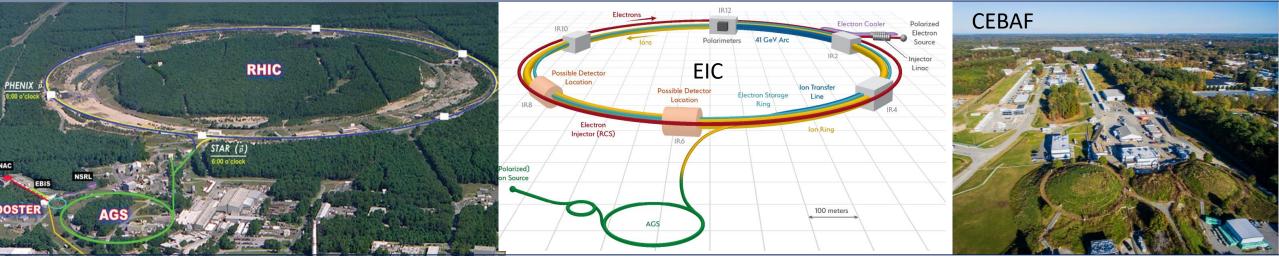
Mapped to Cerebras wafer (placed and routed)

[Cerebras Compiler Docs, link]

29

### Summary

- Streaming readout is a paradigm shift adopted by many modern Nuclear Physics (NP) experiments, driven by diverse event topologies and stringent bias control
- Requiring large factors of data reduction computationally and at high throughput
- Driving the need of AI-based algorithms and platforms
  - $\rightarrow$  opportunities in application of FastML
  - Feature extraction, compression, signal selection/background noise removal, reconstruction
  - Utilizing ASIC, FPGA, and emerging novel AI accelerators



#### Join us! A Postdoc Advertisement

- BNL plan to open a postdoc position in coming months on real-time Albased data reduction for sPHENIX and EIC
- Interested candidate please contact jhuang@bnl.gov

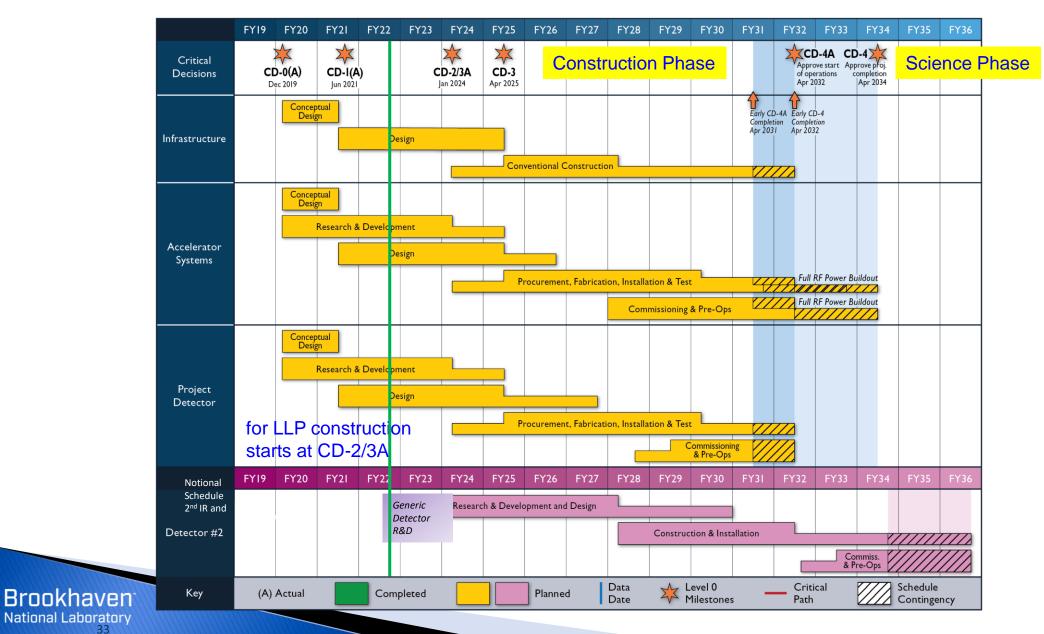


# **Extra information**



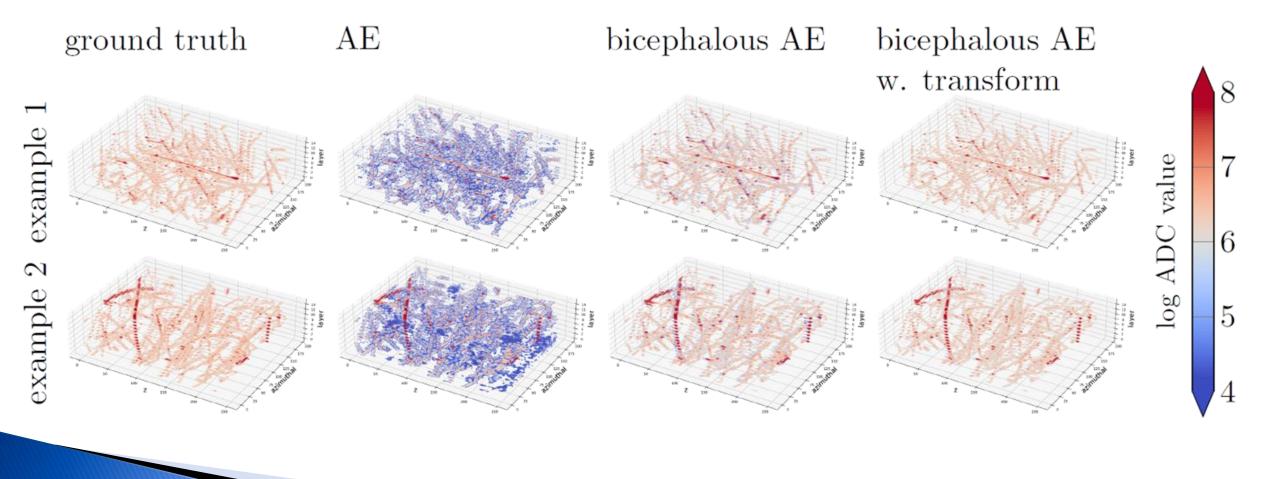


# High Level EIC Reference Schedule

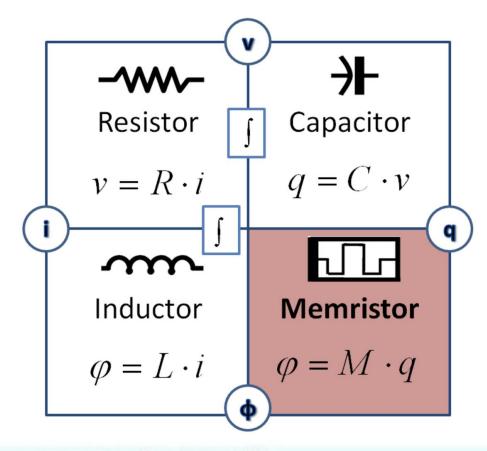


National Laboratory

#### **Results from Bicephalous AE with transform** [arXiv:2111.05423]



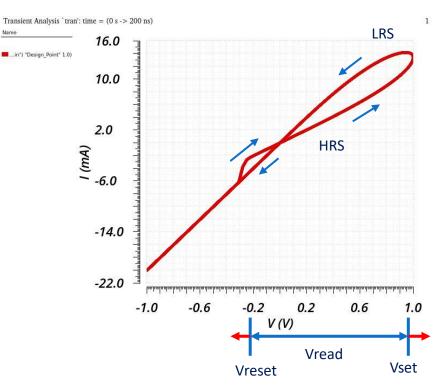
#### Memristor



IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-18, NO. 5, SEPTEMBER 1971

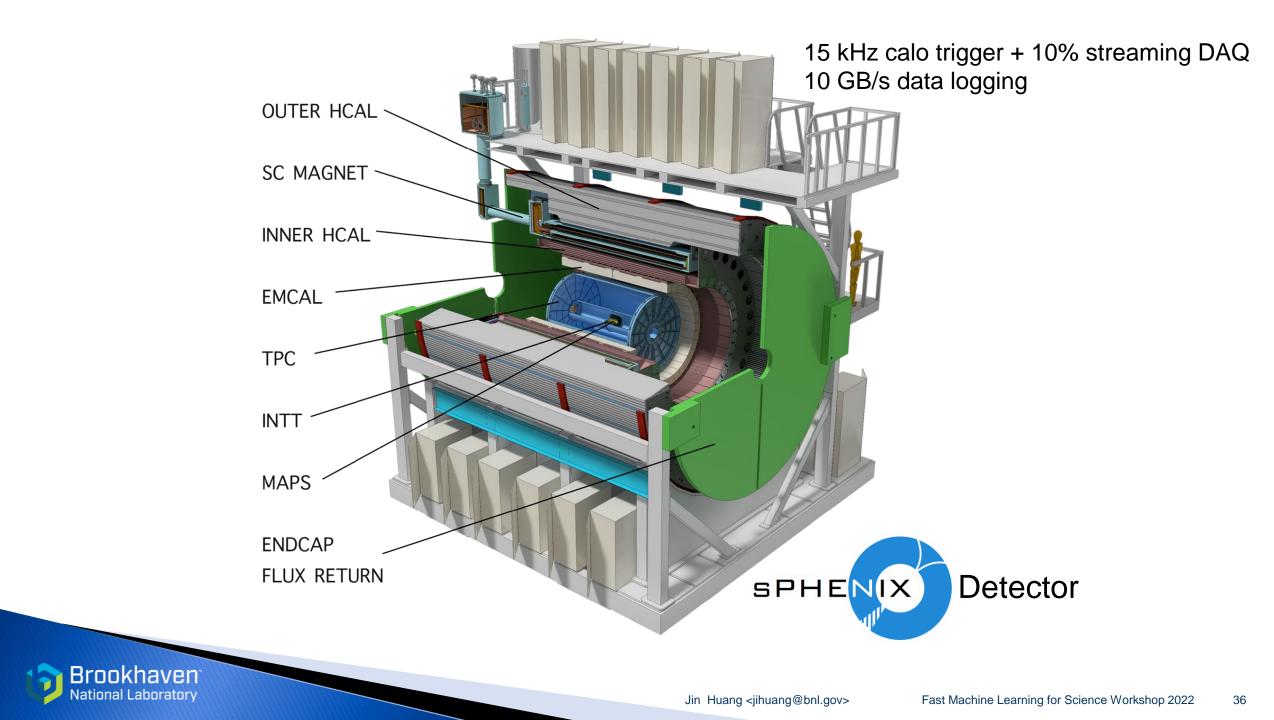
Memristor—The Missing Circuit Element

LEON O. CHUA, SENIOR MEMBER, IEEE

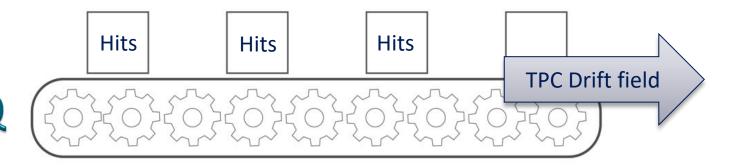


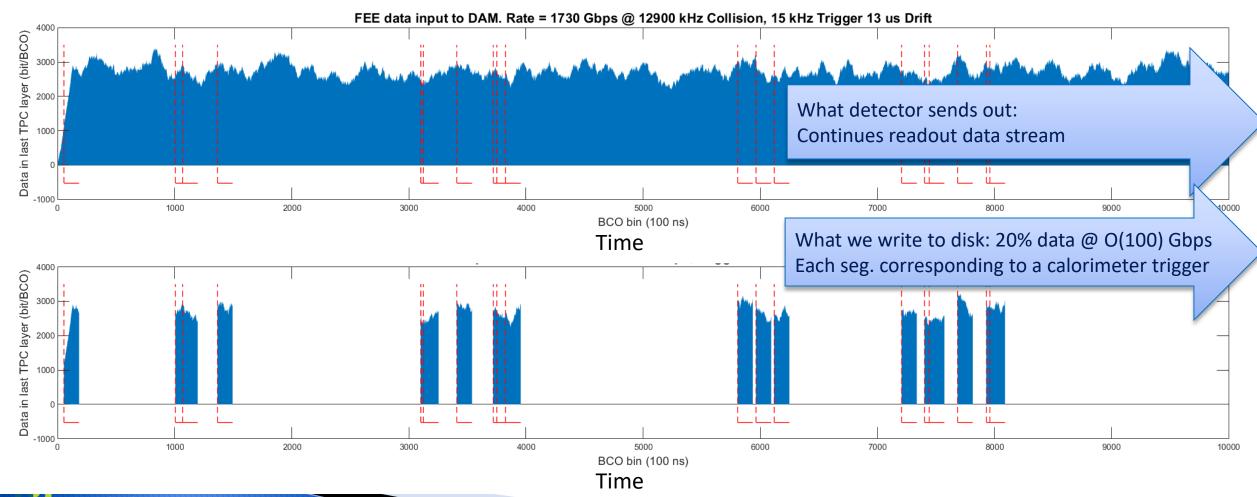
- Resistor with varying resistance
- Low Resistive State (LRS)
- High Resistive State (HRS)

507



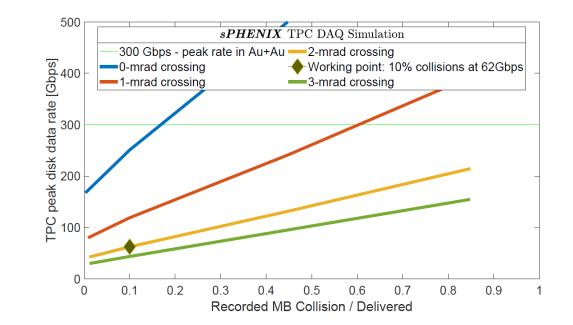
# TPC data stream in sPHENIX triggered DAQ





#### **Streaming readout status at sPHENIX**

- All three sPHENIX tracking detector uses streaming readout
- Developed plan to take 10% streaming data for heavy flavor physics program commended by RHIC PAC.
- Data taking start in 2023!

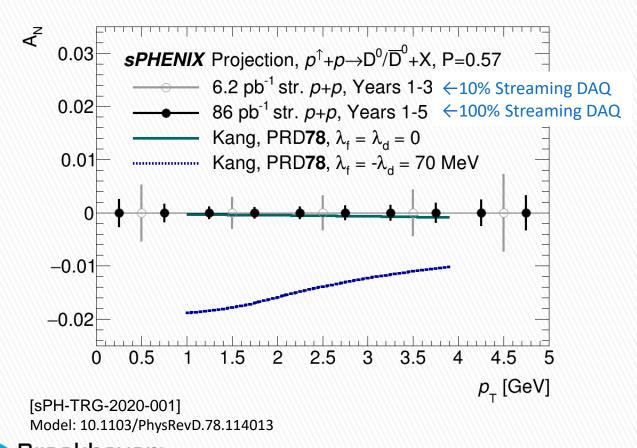


#### RHIC PAC 2020 report

We commend sPHENIX for developing the continuous streaming readout option for the detector, which increases the amount of data that can be collected in Run-24 by orders of magnitude. In particular in the sector of open heavy flavor, this technique will give access to a set of qualitatively novel measurements that would otherwise not be accessible. Given the tight timeline for completing the RHIC physics program before construction of the EIC begins, this is a tremendous and highly welcome achievement.

# Expanding the streaming data would given much better physics output

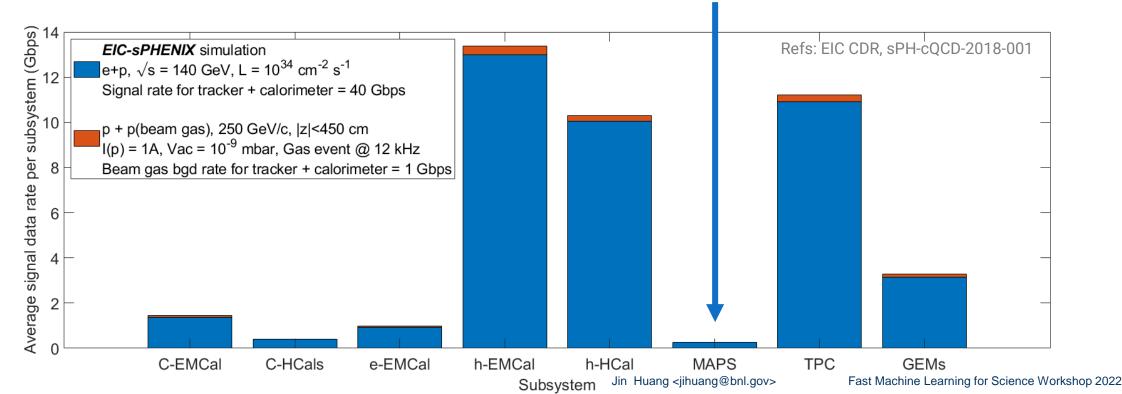
#### sPHENIX D<sup>0</sup> trans. spin asymmetry, $A_N \rightarrow$ Gluon Sievers via tri-g cor.



- sPHENIX default to record 10% streaming data in tracker
- By increasing to 100% streaming data, we can significantly improve reach of D0 access to tri-gluon correlation
- However, 100% recording is significantly bump to data rate, >250Gbps (sPHENIX expect to log at ~100Gbps)
- Requires some real-time data reduction, opportunity for AI application
  - Lossy compression, focus of later this talk
  - Signal selection: seminar D.T. Yu Feb 1st

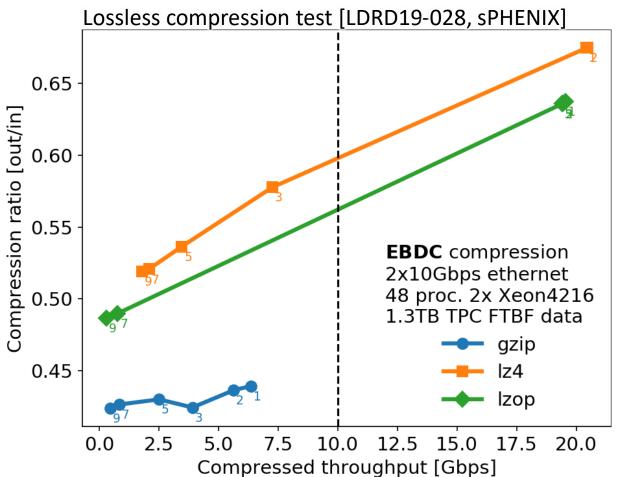
#### Signal data rate -> DAQ strategy

- ▶ What we want to record: total collision signal ~ 100 Gbps @ 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
  - Assumption: sPHENIX data format, 100% noise, Less than sPHENIX peak disk rate. 10<sup>-4</sup> comparing to LHC collision
- Therefore, we could choose to stream out all EIC collisions data
  - In addition, DAQ may need to filter out excessive beam background and electronics noise, if they become dominant.
- Very different from LHC, where it is necessary to filter out uninteresting p+p collisions (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)



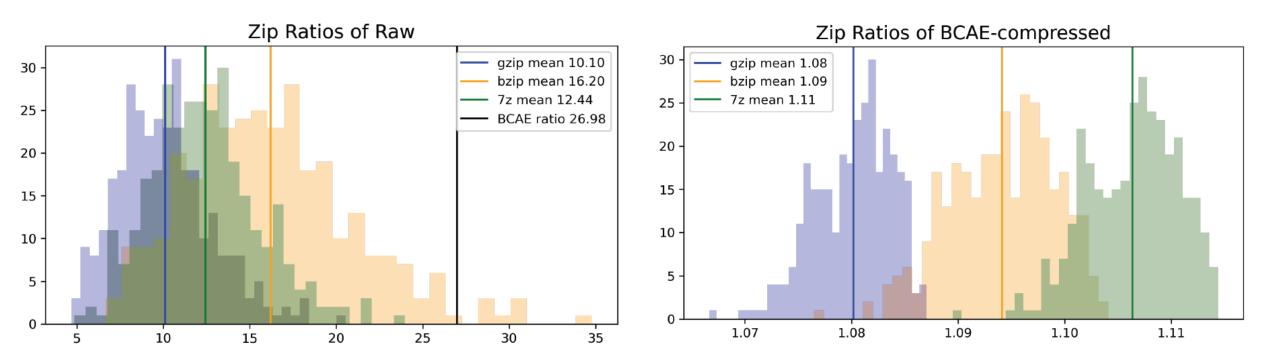
#### **Online computing for streaming data - compression**

- Lossless compression
  - Compress by ~1/2
  - Well established fast compression algorithm
- Lossy compression
  - Opportunity for unsupervised machine learning based on data
  - This work: Bicephalous Convolutional Neural Encoder for compressing zerosuppressed data and noise filtering



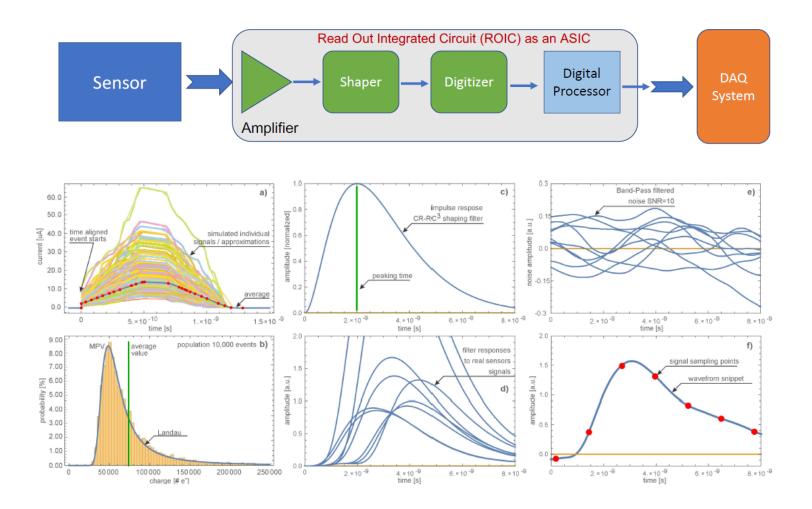
#### **Compressibility check: thanks to suggestion from Brett!**

The lossy-compressed code is hardly compressible further losslessly



# LGAD signal sample [LDRD 21-023, JINST in press]

Current focus: Deep dive into NN regression for LGAD tracker-TOF data



Brookhaven National Laboratory

## Blured boundary with offline computing

Countesy: David Lawrence ECCE computing model [link]

