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m Outline

Motivation and context

— Public and private investment in fusion energy has dramatically increased

— Complexity of fusion plasmas — large gap to necessary latencies

Offline applications and opportunities in fusion energy

— Design and engineering: Lightweight models for optimization

Online applications and opportunities in fusion energy
— Sensor fusion: Sparse, external, nonlinearly coupled

— Active control: Tight latency (< ms), advanced control

Summary



m You may have heard about fusion in the news
over the last few years
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Inanexperimenton21 December 2021, JET's
tokamak produced 59 megajoules of energy
overafusion‘pulse’ of § seconds — more than
double the 21.7 megajoules released in 1997
over around 4 seconds. Although the 1997
experiment still retains the record for ‘peak
power’, that spike lasted for only a fraction of
asecond, i
was less than half that of the latest test, says
Fernanda Rimini, a plasma scientist at the
CCFE who oversaw last year's experimental
campaign. The improvement took 20 years
of
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The Big Read Energy sector

Nuclear fusion: why the race to harness the
power of the sun just sped up

heating, cooling and movement happening
inside the plasma that will be crucial to run
ITER, says Rimini.

The Joint European Torus has doubled the record Fiveseconds “isa big deal’, adds Proll. “Itis

for theamount of energy made from fusing atoms. really. really impressive” Burningplasma marks

Last year, the US Department of Energy’s key step towards power
from nuclear fusion
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DeepMind Has Trained an Al to Control Nuclear Fusion eveneovors sosthenprimn.

The Google-backed firm taught a reinforcement learning algorithm to control the fiery plasma inside a tokamak nuclear fusion reactor.

n S énds $1.8 Billion as
nvestors Chase Star Power

No'one has been able to generate net energy by combining atoms, yet Commonwealth
Fusion Systems has attracted Bill Gates and George Soros




Ok, so what changed”? X

* Computing power n'“ﬁ;(ﬁ?gcmﬁﬁ WORK THIS TIME
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Simulations are crucial to understanding fusion plasmas

— Many models have only recently become tractable




m Ok, so what changed? 7,

* Computing power #'1T MIGHT ACTUALLY WORK THIS TIME [

e B O e e r\m\‘

— Simulations are crucial to understanding fusion plasmas
— Many models have only recently become tractable
* New technology

— HTS magnets, diode lasers, etc.

— Advanced manufacturing, power electronics, etc.
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— Simulations are crucial to understanding fusion plasmas

— Many models have only recently become tractable By primary HQ

* New technology

Canada

. UK
— HTS magnets, diode lasers, etc. en @@%Germany e,
1 . rance apan
— Advanced manufacturing, power electronics, etc. TR Yt

* (@Global scientific consensus on readiness

Australia

— Private sector interest (> $4B of investment)

— Renewed public sector interest

Source: Fusion Industry Association (2022)

| ,@, UK Atomic Energy Authority

MILESTONE-BASED FUSION DEVELOPMENT PROGRAM



m Fusion is now being actively pursued to 0 0,
accelerate access to a zero-carbon future

* Provide a dispatchable source of carbon-free energy

* Reduce storage/overbuild requirements to cover seasonality
* High-quality process heat for non-electrical applications

* Enables a paradigm shift to continued growth in energy usage

Primary energy supply by source A Northern System
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1- N. Sepulveda et al., Joule 2, 2403 (2018)



m Many private and government projects are now GLD
aiming for fusion demonstrations in the near term

* Both private and public projects are actively building fusion demonstrations
— Global enterprise with billions of $/year in total investment
* A variety of methods and designs are being pursued

— Public — lower risk; Private — higher risk
— Net-energy demonstrations as early 2023

2\ Commonwealth
< Fusion Systems

2- “Final report of the committee on a strategic plan of U.S. burning plasma research,” The National Academies Press (2019)
3- “European Research Roadmap to the Realisation of Fusion Energy,” EUROfusion (2018)



This talk will focus on considerations for the
tokamak magnetic confinement concept

* “Magnetic confinement” is the leading technique o ' ' '

. . gl
— Accounts for bulk of private and public investment € ol g
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. . . s =
* The tokamak is the leading configuration e °r
. o 6 F
— Has demonstrated large amounts of fusion power CH
. . . . g DTE1 22MJ
* Considerations are common to all fusion concepts with 2
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« Prince-
ton, designed 1n 1676, was intended to +  Tuesday through Saturday,
produce 10 million waus of power. Business Day



m Fusion plasmas are a complex system that GLD
challenges understanding, prediction and control

Length [m]

* Multiscale nonlinear dynamics

* Coupled multispecies system + E-M
e Turbulence driven by steep gradients

100

03

[N

* First-principles models are rarely tractable for
online applications and design optimization

* Even simplified/linearized models too slow

10

* Diagnostic access 1s extremely limited
* Almost exclusively external diagnostics (eg. optical) %) | B ol B

* Sensor fusion required for most signals

* Deconvolve and/or localize measurements o ==

e Strict latency requirements (ms or faster)




m Machine learning holds promise to help GLD
accelerate the realization of fusion energy

* Commercial systems have different needs for

models used 1n design and control Length [m]
A @y

* No more research “compromises”
. 0 —
* Predict first not model after 10

e Models must be fast

103 —

e Models must be accurate

10

* Models must be robust L5 Time [sec]
|

* Fertile ground for this community! Control

Design/Optimization



m Outline a0,

* Offline applications and opportunities in fusion energy

— Design and engineering: Lightweight models for optimization




m Design point optimization is critical to GLD
performance and economics

125

(@

3.2

* Fusion production depends on T and n profiles
* Must be in equilibrium (fast and slow)
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* Energy deposition and transport is complex
* Sources: fusion products, external heating, etc.
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 Sinks: turbulent transport, radiation, etc.
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* Many complex bifurcations/phase transitions

(A €m?)
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240

* Core and surrounding system are coupled

* Magnets set plasma shape 160

* RF waves refract through plasma
80

* Large high-dimensional optimization space
 Blanket required for energy and fuel cycle

 Maintenance needs to be considered




m The stellarator concept focuses heavily on GLQ
confinement optimization through design

* By introducing 3D fields stellarators can confine
fuel without current flowing in the plasma

* High-dimensionality optimization space

* Transport of heat and mass 1s very sensitive to
magnetic field geometry

* Neo-classical losses: particle drifts

* Plasma turbulence: global nonlinear problem

* Machine learning approaches are being  Previous configurations

......................

investigated to accelerate optimization — w«p. o T

N
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* Transport calculation (or proxy) required .’
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5- E. Paul et al., PRL 128, 035001 (2022)
6- E. Maurer et al., JCP 420, 109694 (2020)



m Model-discovery methods can build fast
reduced-order models of nonlinear plasmas

_[B a=q(@)+ ¥, x;(@)a;(t)
* Reduced-order methods have potential for o ’H - [
developing fast surrogate models e i i I
* ODE, ML, etc. \ ) ‘
. 2D I N , b
* The SINDy method has shown promise on — ) - l AIERC 1)

reproducing nonlinear plasma dynamics
* Build nonlinear ODEs directly from data

8 Model as |
 Naturally supports physics-informed constraints @

* Physics-informed constraints can
significantly improve model quality
* Reduce required training data
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* Enforce local or global stability
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Kaptanoglu et al., Phys. Rev. E 104, 015206 (2021)

7-
8- A. Kaptanoglu et a., Phys. Rev. Fluids 6, 094401 (2021)
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m Outline a0,

* Online applications and opportunities in fusion energy
— Sensor fusion: Sparse, external, nonlinearly coupled

— Active control: Tight latency (< ms), advanced control




m Building a consistent picture of equilibria and GQ
dynamics from diagnostics is complicated

« Sparse diagnostic set necessitates integration of multiple signals e (T o o
. : }_| TN\ !
* Plasma state must be reconstructed in time I Haonetic Probe
* Even fewer signals in future reactors [ R\ T
: : : | ! BT\
* Optical and other EM-based diagnostics are complex { e
* Nonlocal measurements: equilibrium-dependent sightlines [ ]
* Convolve many fundamental quantities (7, n) AN LDBm
* Complex spectrographic landscapes i '

 Still early days for applying machine learning to this area
* Restrict ourselves to things we can observe directly (next section)

* Lump this step in to a larger NN (following section)

* Accurate sensor fusion can make some control easier
 Ability to work directly with primary variables

A[nm]



m Active control of instabilities in tokamaks GLD
requires low-latency pipelines

* Instabilities can degrade performance in fusion i » | 0
plasmas | | | zi g:gm
* Avoided by reduced performance e 53 :
. : _ 08 E 8t . ]
Suppressed by active control =, oo 5 gt [P N e
. . . . N ) o 4 damped
 Active control requires a low-latency pipeline |2 g plasma response
* Mode growth rates are on ms timescales 15 %% ] N-M 5B, (G)
. . -32 407 ’
* GPUs are frequently used in community - . nl o les oo ?";‘;’ET
. . R [m] \L uncontrolie
* Plasma response can be complex, motivating . 0
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optimal control —— Time (ms)
* Opportunity for ML system response models
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9- A. Battey, PhD Thesis: Columbia U (2022)



A4 We are now working with this community to &2
leverage tools for low-latency ML

* Diagnostic access will become more restrictive in
reactor environments

* Remote observations only, complex emission functions

Amplitude ground truth

=
w

* ML applies a promising path to fast mapping from

Lo MRS = o 4/1 dominant 3/1 dominant FB3 (n=1)
signals to desired quantities = E WV\M\AWM
) / Camera 1 . VW
* We are working to use
optical cameras to observe \ LS
. Conv. block

mode phase/amplitude

* Convolves mode with edge 7 F
conditions, reflections, etc. i = |

e HLS4ML enables Dense block o
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* - Talk by Y. Wei in today’s contributed session



m Accurate prediction of plasma disruptions is a GLD
significant open question for tokamaks

* A disruption is a rapid termination of plasma current 2 3 00
» Caused by a range of phenomena: Instabilities, loss of control, etc. Zoe osod
* Can damage device — more frequent maintenance oo .

0.24

* Avoidance and/or mitigation requires long lead time

0.08

© N &» o
n_equal_1l .
normalised 10 disr

0.00

 Causality 1s complex: nonlinearity, multi-event chains

0.25

0.00

* Machine learning approaches have shown promise
* (lassification: random forest, NN, etc.

-0.25

feature contributions

time [s]

* Online usage requires robust, low-latency implementations

(0.717s)  (0.724s)  (0.729s) (0.731s)  (0.736s)  (0.747s)

* Very low false negative tolerance (— 0)

: 1.2
* Very asymmetric datasets 0l
* Want as close to day 1 as possible: transfer or virtual learning 2 08F
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10- C. Rea et al., Nucl. Fusion 59, 096016 (2019) 0.0 0.2 0.4 0.6 0.8

11- J. Berkery et al., Phys. Plasmas 24, 056103 (2017) Timeiis)



m A VAE-based method has shown promise for GLD
both detection and avoidance of disruptions

2.5

* Diagnostics form a high-dimensional -
observation space R € — -
* Important dynamics are expected to behave with LB . Da;quisiﬁf
shared low dimension structure ) P
* A VAE was trained with a 2D latent space o .';-3. e
representation from 7D input data o o . 1

17.5 A1

o o Latent space trajector
* Successfully demonstrated the prediction and = :/_g_//\f"’—‘ i i

Ip (KA)

avoldance of disruptions

150 4

EUV
Activate relevant actuator

« Stability boundaries were identified in latent space
Ve Wy

* Local gradients used to identify actuator outputs N
. ’g 92 1
* Further study 1s underway 2" : .

* More signals, larger devices o 8 0oty —stman e L\, e
[C) ime (ms larm triggered
EE 5 4 ! e;f---)----- Aljentitfygcgaisi
@ p . Control System

’ ’ time (ms) °

12-Y. Wei et al., Nucl. Fusion 61, 126063 (2021)



m Reinforcement learning was recently GLQ
demonstrated to build an end-to-end controller

* EPFL in collaboration with Google demonstrated
a NN-based controller built using reinforcement
learning

* Successfully controlled real plasmas in TCV

0.30s 0.40s 0.45s 0.47 s

* Performed better than existing hand-tuned controller

* Requires fast, accurate training environment
* Approaches optimized for data paucity

* Possible application for reduced-order models

* Online implementation using CPU
* <10 ms latency requirements

 Other applications require lower latency

 Additional diagnostics require more throughput

13- J. Degrave et al., Nature 602, 414-419 (2022)



m Summary

* The world 1s now working to realize fusion as an energy source in the near term
* Public and private sectors are moving together

* Many applications within the fusion space require fast nonlinear models
* Design optimization: Fast surrogate models and interpolation over high-dimensional datasets
 Sensor fusion: Integrate multiple signals with nonlinear dependence into unified state
* Active control: Surrogate models for system response and/or end-to-end controllers

* Machine learning methods can (will?) play an integral part in fusion’s realization
* Models need to be fast, accurate and robust
* Hardware pipelines will likely be required to satisfy latency requirements

* Interested? Talk to your local fusion scientist or I can point you 1n the right direction
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m Thank you for your attention

Questions?



