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Anomaly detection

How to look for new physics processes without knowing how they should look like?
New physics should be rare: Anomaly detection
Even if you are able to identify “anomalies’, how to interpret the observation?
A good method of anomaly detection requires:
A method that identifies particle collisions that seem to be anomalous
Able to provide context: how should false positives look like?
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Anomaly detection based on autoencoders: Train multiple autoencoders such that
algorithm learns how to compress and their reconstruction is independent for the
decompress the data using background events background

Events that are poorly decompressed are often
rare and point to anomalous events
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provide a complete strategy for unsupervised non-resonant
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. anomaly detection. Both signal extraction and data-driven
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o autoencoders. The method shows strong performance on test

datasets and has the advantage of being online-compatible. N 4
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}(} Online compatibility

The LHC Big Data problem
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¢40 MHz in / 100 KHz out

e~ 500 KB / event

® Processing time: ~10 Us

® Based on coarse local reconstructions

® FPGAs / Hardware implemented

Slides from Maurizio Pierini

Tune the autoencoder
thresholds to save all events in
the signal enriched region
Prescale the other 3 regions to
determine the background
composition
Train events using simulation or
data directly
Use data from a previous
run or independent trigger


https://atrium.in2p3.fr/nuxeo/nxfile/default/2c445c94-34a9-4bce-97c7-0847bb139245/blobholder:0/PIERINI_Deep%20Learning%20with%20FPGA.pdf

}f? Conclusions

In this work we proposed an online-compatible
Unsupervised Non-resonant Anomaly detection method
We use autoencoders as anomaly detectors and enforce
the decorrelation between reconstruction losses using
the DisCo loss

Background estimation using the ABCD method

Non-closure for samples containing new physics R24 A4l s e ou
[ ata
events B A [ Background: D*B/C
Significances up to 4 for initial signal
contaminations of 0.1%
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Available on Phys. Rev. D 105, 055006
Scripts to run the model available on github 4



https://arxiv.org/abs/2111.06417
https://github.com/ViniciusMikuni/DoubleAE
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ABCD method is a popular choice of

data-driven background estimation
Requires 2
background-independent
distributions
Both distributions should
provide signal sensitivity to
avoid contamination
Background in the
signal-enriched region is
described by the other
background-dominated regions
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thresholds for the ABCD method
Enforce the decorrelation between
loss functions using the distance

Use the reconstruction loss of
correlation (DisCo') loss

each autoencoder to define
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.035021
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.035021

5> ADC2021 dataset

i w 'Welco'me e Test the idea in a realistic setting: anomaly detection at trigger
Anomal‘y"Detection Ievel
Wbatachallengs 2021 Goal: Create algorithms that can trigger anomalous events that
S & would otherwise be thrown away
Nl Dataset consists of a cocktail of Standard Model processes
passing a single lepton trigger
Momenta of leading 4 leptons and 10 jets are saved and used
as inputs to the autoencoder
No invariant mass information used
Train on background events and evaluate over different new
physics scenarios to test the performance




5> ADC2021 dataset

New physics benchmarks
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5> ADC2021 dataset

Calculate the background in the signal 3 VO SM L oo
enriched region using the ABCD method 8" = ’ ’ .
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Non-closure test: compare real number < £ 8 . ht oy
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5> ADC2021 dataset

Quantify the difference in terms of signal

significance
Less than 1 sigma for sample without
NP and 1-4 for different NP scenarios
Signal contamination in the sidebands
can lead to incorrect significances:
Corrections to background prediction
for limit setting

Significance

Significance = (N-B)/sqrt(N), if N>B and 0 otherwise
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}f} Online compatibility

Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz
at the Large Hadron Collider

VIII. CONCLUSIONS

We discussed how to extend new physics detection
strategies at the LHC with autoencoders deployed in the
L1T infrastructure of the experiments. In particular,
we show how one could deploy a deep neural network
(DNN) or convolutional neural network (CNN) AE on a
field-programmable gate array (FPGA) using the hls4ml
library, within a O(1)us latency and with small resource
utilization once the model is quantized and pruned. We
show that one can retain accuracy by compressing the
model at training time. Moreover, we discuss different

Our model uses only fully
connected layers: demonstrated
to satisfy trigger budget
constraints when running on
FPGAs after pruning and
compression

First complete online
compatible anomaly detection
protocol to be proposed



B Distance correlation
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Decorrelation function

e Given the output space of 2 neural networks F and G, the distance covariance
is defined as

dCov?[f, 9] = (If — 1 x g — g')
+{If = F1) x(lg=g1) —2(If = F1 x lg— "I}

e Where f and f' are sampled from F and g, ¢, and g" are sampled from G
e The correlation distance is then defined as

dCov?|f, g]
dCovl|f, f]dCov]g, g]

dCorr’[f, g] =

S



