SPVCNN for primary vertex reconstruction

<u>Haoran Zhao</u>¹, Alex Schuy¹, Zhijian Liu², Philip Harris², Ke Li¹, Shih-Chieh Hsu¹, Scott Hauck¹, Song Han²

¹ University of Washington
² Massachusetts Institute of Technology

Motivation

Lower vertexing efficiency at high pileup

Dense track environment in High-Luminosity LHC presents challenges for primary vertex reconstruction

Large timing consumption

Dataset

- Full hadronic ttbar events at 14 TeV w/ PU = 10
- Pythia 8.243
- ACTS FAst TRAck Simulation
- 10K events (8:1:1 = train/val/test)

Cluster tracks into groups.

Workflow

Sparse Point-Voxel Conv Neural Network

H. Zhao

In the embedded space, tracks belonging to same vertex are closer.

Object condensation is run on top of SPVCNN outputs.

Object condensation

- Representative of a track, condensation score
- Setting a threshold of score, t_{β}
- Cluster the track within a radius, t_d

See Alex's talk

JK, arxiv:2002.03605

Event display Truth vs. SPVCNN

Overall SPVCNN reproduces the truth vertex information.

Panoptic segmentation metric PQ ~ 0.85

Event display Truth vs. AMVF

AMVF discards several tracks, labeled as -1

Panoptic segmentation metric PQ ~ 0.80

• Truth

truth vtxID

0

2

3

4

5

Summary

- First application of SPVCNN to do PV finding
- Initial test with SPVCNN is promising, Panoptic Quality ~ 0.85

Next Steps

- Evaluate performance with physics metrics, e.g. PV quality, Hard Scattering(HS) vertex quality, HS reco efficiency etc.
- Systematically compare performances with other algorithms, e.g. Adaptive Multivertex finding(AMVF)
- Compare with other ML techniques, e.g. <u>hybrid DL in LHCb</u>
- 4D vertexing by making use of tracking time e.g. HGTD