oooooooooo

KO *
HE G En & Trk X 1 F

Exa. TrkX & GPU Acceleration with
Inference as-a-Service

Yongbin Feng!!l, Shih-Chieh Hsul?, Xiangyang Jul®!, Alina Lazar!*!

[1]Fermilab,[2] Univ. Washington,B] LBNL,[4] Youngstown State Univ.
2022 Fast Machine Learning Workshop

Dallas, Texas

October 3rd, 2022

T

Track Reconstruction at the HL-LHC

w 1 OO _l LILEL I LI I LI I LI I LI I LI I LI I LI I LILEL l— E
Down-beampipe Spacepoint Distribution = — Reconstruction of 2017 pp data, (s = 13 TeV I 8
= 90 in Athena release 21.0.37 tuned for (1) = 30 - o
1000 o) - on Intel” Xeon” CPU E5-2630 v3 -~ v
5 80 low-u reference runs 10862 luminosity blocks - 8
o) = [high-p run 335302 463 luminosity blocks - e
e 70 - >
500 A Z E E. E -(7)
a < 60) = 2
£ KN & - £
c 50 . = - |
S - == = _
40F- H -
© - -
S = i =
30k i =
-500 - —
20 -
10 ATLAS Preliminary —
—1000 A — " .~ —
T T T T _I L1l I L1 1.1 I L1 1.1 I L1 1 1 I L1 11 I L1 11 I L1 11 I L1 11 I L1l l-
-1000 -500 ' '0 500 1000
x direction (mm) q 0 2 30 40 50 60 70 80 90 100

(W)

* Track reconstruction is expected to be very challenging in the future, especially at the HL-LHC:
2 A ttbar event with 150-200 pileup at the HL-LHC will produce O(5K) charged particles, and O(100K) spacepoints

* Computing cost does not scale linearly with number of pileup. Track reconstruction takes the major fraction of
time among all the reconstruction steps

ML-based Track Reconstruction

Graph Neural

Metric o0 1® o Connected
Learning A oy Fé@o Components
or — or*" or
,1‘/I‘, - @/'éé’;%% o?

WA Gy I Connected

M&::Ie 1 %’7:” o Components

Ceo + Walkthrough
Hits Graph Edge Scores Track Candidates

Graph Edge Graph
Construction Classification Segmentation

5 I ATLAS Smuiation Pramimary 2
. . c - imulation Preliminary -
* ML-based track reconstruction with GraphNN could be a S 115 o o =
o . E - s =14 TeV, ti, (u) = 200, primaries (tf and soft interactions) pT>1GeV -
promising solution: G 4 vshg Module Map =
9 - Matching to truth particles without track fit: E
»» ML algorithms can run fast, easy to optimize, and easily 3 1S e E
. N [_
accelerated on different coprocessors to get faster R | e S
O — —o]
q) - -
. . . o 0.95_—]
* Good performances on the 200 pileup simulation datasets: 5 AT b e :
O ~ —A=
_ s 09 _ T
similar efficiency as the classical algorithm, and O(1077) Z o ™ S
fake rates O TTE :
08‘11..I I i B I I .
24 3 2 -1 0 1 2 4
n

Inference Costs

Inputs: Hits Embedding Building
(spacepoints) (MLP) (Graph Building)

(-
IS

Edge ﬁltering 1 W CPU - 48 cores
Outputs: Track collection (MLP) w= GPU
[abeling {_ GNN
(Domain Algorithm) (Interaction Network)

* Workflow runs much faster on GPUs compared with CPUs after
optimizations: from O(20s) on 48-core Intel Xeon 8268s CPUs to <Is on
NVIDIA V100. More details on Arxiv.2202.06929

— =
o N

.

Inference Time (s)

https://arxiv.org/pdf/2202.06929.pdf

Inference As-a-Service

Client: Regular Workflow

* Inference as-a-Service provides lots of

Server: Exa.TrkX Services
benefits, e.g.:

> Separate ML inferences out of the main
software, easy to maintain

s Enables access to remote GPUs;

more flexibility of the CPU/GPU ratios;

I

Easy deployment on different types of
COprocessors

o Etc

LT LTI TAT ¢ More in Patl”iCk’S ta.”(and DYIan’S ta”(

https://indico.cern.ch/event/1156222/contributions/5062792/
https://indico.cern.ch/event/1156222/contributions/5062814/

Current Exa. TrkX Workflow with as-a-Service

:Client: Server
' ' ' Embedding Building Edge filtering
(Pytorch) (CUDA/Python) (Pytorch)

Labeling

(cpp in boost, Py with
some GPU code)

Inputs: Hits
(spacepoints)

Outputs: Track
collection

GNN
(Pytorch)

* Server side uses NVIDIA Triton Inference server. Various features and benefits:

> Supports of different backends: ML including TF Pytorch, ONNX; domain algorithms: CUDA, Python, Cpp

> Ensemble model that can collect the whole inference modules together; reduce the 10s between client and server

* Pytorch models runs out of the box; CUDA and cpp implementations currently done with Python custom
backend

https://developer.nvidia.com/nvidia-triton-inference-server

Preliminary Results

Embedding 0.5 Embedding 1.7
Building 2.2 Building 7.3
Filtering 27.6 Filtering 26.7

GNN 31.7 GNN 21.3
Total 62 Total 64.4

Benchmarked in the 0-PU dataset to start with.

Time not including the labeling part (domain algorithm code; takes some efforts to prepare a custom
backend for it)

Similar inference time between CPU-GPU directly connected and CPU-Server with aaS:

e Also checked the server-side metrics: the fraction of time to handle IOs are small. Most of the time are on
computations. .

Summary

* Track reconstruction is expected to be very challenging in the high-density environments. ML-based
approaches are naturally nice candidates to solve such problems.

* Current Exa.TrkX models have very promising results, similar to domain algorithms and runs faster. These ML
algorithms can easily be deployed on different hardwares and accelerated:

% Preliminary results indicates that it can run 20-100 times faster on the GPUs compared with CPUs.

* As-a-Service version of the Exa.TrkX inference workflow implemented. Preliminary results show consistent
behaviors with directly-connected, but more flexibilities. More studies and results in the future!

Back Up

