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Track Reconstruction at the HL-LHC
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* Track reconstruction is expected to be very challenging in the future, especially at the HL-LHC:
2 A ttbar event with 150-200 pileup at the HL-LHC will produce O(5K) charged particles, and O(100K) spacepoints

* Computing cost does not scale linearly with number of pileup. Track reconstruction takes the major fraction of
time among all the reconstruction steps



ML-based Track Reconstruction
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Inference Costs

Inputs: Hits Embedding Building
(spacepoints) (MLP) (Graph Building)
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Edge ﬁltering 1 W CPU - 48 cores
Outputs: Track collection (MLP) w= GPU
[abeling {_ GNN
(Domain Algorithm) (Interaction Network)

* Workflow runs much faster on GPUs compared with CPUs after
optimizations: from O(20s) on 48-core Intel Xeon 8268s CPUs to <Is on
NVIDIA V100. More details on Arxiv.2202.06929

— =
o N

.

Inference Time (s)



https://arxiv.org/pdf/2202.06929.pdf

Inference As-a-Service

Client: Regular Workflow

* Inference as-a-Service provides lots of

Server: Exa.TrkX Services
benefits, e.g.:

> Separate ML inferences out of the main
software, easy to maintain

s Enables access to remote GPUs;

more flexibility of the CPU/GPU ratios;

I

Easy deployment on different types of
COprocessors

o Etc
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https://indico.cern.ch/event/1156222/contributions/5062792/
https://indico.cern.ch/event/1156222/contributions/5062814/

Current Exa. TrkX Workflow with as-a-Service

:Client: Server
' ' ' Embedding Building Edge filtering
(Pytorch) (CUDA/Python) (Pytorch)

Labeling

(cpp in boost, Py with
some GPU code)

Inputs: Hits
(spacepoints)

Outputs: Track
collection

GNN
(Pytorch)

* Server side uses NVIDIA Triton Inference server. Various features and benefits:

> Supports of different backends: ML including TF Pytorch, ONNX; domain algorithms: CUDA, Python, Cpp

> Ensemble model that can collect the whole inference modules together; reduce the 10s between client and server

* Pytorch models runs out of the box; CUDA and cpp implementations currently done with Python custom
backend


https://developer.nvidia.com/nvidia-triton-inference-server

Preliminary Results

Embedding 0.5 Embedding 1.7
Building 2.2 Building 7.3
Filtering 27.6 Filtering 26.7

GNN 31.7 GNN 21.3
Total 62 Total 64.4

Benchmarked in the 0-PU dataset to start with.

Time not including the labeling part (domain algorithm code; takes some efforts to prepare a custom
backend for it)

Similar inference time between CPU-GPU directly connected and CPU-Server with aaS:

e Also checked the server-side metrics: the fraction of time to handle IOs are small. Most of the time are on
computations. .



Summary

* Track reconstruction is expected to be very challenging in the high-density environments. ML-based
approaches are naturally nice candidates to solve such problems.

* Current Exa.TrkX models have very promising results, similar to domain algorithms and runs faster. These ML
algorithms can easily be deployed on different hardwares and accelerated:

% Preliminary results indicates that it can run 20-100 times faster on the GPUs compared with CPUs.

* As-a-Service version of the Exa.TrkX inference workflow implemented. Preliminary results show consistent
behaviors with directly-connected, but more flexibilities. More studies and results in the future!
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