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Traditional Gravitational Wave Physics Software Stack

Scientist encodes mental model
of system under study, only

needs a handful of examples to
work through it

Best models adopted by
standardized libraries, made
available in IGWN computing
environments via curated
Anaconda environments

Object-oriented,
intuitive workflows
that map on to real
physical concepts

Often designed for
deep analysis of one
waveform at a time



Traditional Machine Learning Software Stack

Scientist who trained the model
distributes its architecture definition and

Model learns by - )
iterating through optimized weights to downstream users
th_ot_Jsands or These users are
. millions of samples required to navigate
from system unwieldy software
E> . stack, keep up-to-date

with latest changes
Might use different set
1 N of libraries entirely
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Objects framed in
terms of tensors and
operations between
them

Take advantage of
parallel processing
of hardware Sample o
accelerators e.g.  BATCH
GPUs dimension

Z

Channel dimension
e.g. IFOs, witness
channels, etc.

Use continuous
functions to keep
track of gradients

automatically <::| Time dimension :> g



MLAGW/HERMES - MLOps for fast end-to-end deployment

learning optimization

Provide fast and intuitive Version updates to
tools for building mental production models in -
models of GW into machine a centralized model

repository %

Robust infrastructure makes iterating on
this process seamless, minimizing the
time from idea to deployment

Model is distributed via a
dedicated containerized
inference service which
abstracts implementation
details and efficiently
leverages heterogeneous
resources
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Users interact with
model via simple
and standard client
APIs with lightweight
dependencies
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Training utilities for common GW operations, e.g.
projecting raw GW waveforms to interferometer responses

Inference-as—a-service deployment tools
designed for streaming timeseries
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1 [ Vanilla Implementation

[ 12as, ONNX backend

[ 1aas, TensorRT FP16 backend
4 - laas, TensorRT w/ 2xGPU

Throughput (seconds of data / s)
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16 Projections 64 Projections 256 Projections 1024 Projections

Batch size 1 Batch size 4 Batch size 16


https://github.com/ML4GW/ml4gw
https://github.com/ML4GW/hermes

