End-to-end acceleration of
machine learning in gravitational
wave physics

Alec Glurmy1 *, Ethan Marx’, W||I|am Benoit?, Saleem I\/Iuhammed2 Ryan
Raikman’, Deep Chatterjee Eric I\/Ioreno Dylan Rankln Michael
Coughlin?, Philip Harris!, Erik Katsavounidis’

Fast Machine Learning for Science Workshop 2022
10/5/2022

* - presenter
1 - Massachusetts Institute of Technology
2 - University of Minnesota

Traditional Gravitational Wave Physics Software Stack

Scientist encodes mental model
of system under study, only

needs a handful of examples to
work through it

Best models adopted by
standardized libraries, made
available in IGWN computing
environments via curated
Anaconda environments

Object-oriented,
intuitive workflows
that map on to real
physical concepts

Often designed for
deep analysis of one
waveform at a time

Traditional Machine Learning Software Stack

Scientist who trained the model
distributes its architecture definition and

Model learns by -)
iterating through optimized weights to downstream users
th_ot_Jsands or These users are
. millions of samples required to navigate
from system unwieldy software
E> . stack, keep up-to-date

with latest changes
Might use different set
1 N of libraries entirely
~) V(=)

Objects framed in
terms of tensors and
operations between
them

Take advantage of
parallel processing
of hardware Sample o
accelerators e.g. BATCH
GPUs dimension

Z

Channel dimension
e.g. IFOs, witness
channels, etc.

Use continuous
functions to keep
track of gradients

automatically <::| Time dimension :> g

MLAGW/HERMES - MLOps for fast end-to-end deployment

learning optimization

Provide fast and intuitive Version updates to
tools for building mental production models in -
models of GW into machine a centralized model

repository %

Robust infrastructure makes iterating on
this process seamless, minimizing the
time from idea to deployment

Model is distributed via a
dedicated containerized
inference service which
abstracts implementation
details and efficiently
leverages heterogeneous
resources

I)

=

Users interact with
model via simple
and standard client
APIs with lightweight
dependencies

4)

Training utilities for common GW operations, e.g.
projecting raw GW waveforms to interferometer responses

Inference-as—a-service deployment tools
designed for streaming timeseries

Traditional laaS

F Timeseries from channel 1 F —\
Waveform Projection Latency Averaged Over 1000 Iterations Timeseris fom channel 2 Py —\\ .
l [l Torch GPU - Waveform Projection] Reweight SNR [Transfer to GPU] . Timeseries fom chanrel & P] LN
‘ N

35

[Torch CPU - Waveform Projection 7] Reweight SNR] Transfer to GPU) X 4 4
i . Bilby CPU - Waveform Projection D Reweight SNR D Transfer to GPU m —i [l 7
: —@- Torch GPU Acceleration (right axis) SN Predicted timeseries . . ’ ’
34 _m Torch CPU Acceleration L : ﬁ ﬁ ﬁ

‘Snapshot length I

s

Snapshotter model on inference
service maintains most recent Cllent only needs to
With hermes input to model as a state send updates fo his sate

| A p— | = 4
Backend online averaging model)
m m meintains average as state, m — o4
8 streams back updates after e
overlapping predictions are made W

Ndo Aqug "sh uogessjpooy

Median Latency per Projection (ms)

1 [Vanilla Implementation

[12as, ONNX backend

[1aas, TensorRT FP16 backend
4 - laas, TensorRT w/ 2xGPU

Throughput (seconds of data / s)

1IFOs 2IFOs 3IFOs 1IFOs 2IFOs 3IFOs 1IFOs 2IFOs 3IFOs 1IFOs 2IFOs 3IFOs

16 Projections 64 Projections 256 Projections 1024 Projections

Batch size 1 Batch size 4 Batch size 16

https://github.com/ML4GW/ml4gw
https://github.com/ML4GW/hermes

