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1. Overview of the CMS L1 Trigger


2. Hls4ml workflow


3. Integration of b-tagging neural networks into 
CMS trigger. 

Outline
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At the LHC, there are 40 million 
proton-proton collisions per second.  

GIF Credit

≈ 𝒪(100) Tbs/s

https://www.google.com/url?sa=i&url=https://gifer.com/en/7h0B&psig=AOvVaw2Iez4PhzMuIlzbAbXdhate&ust=1664315858129000&source=images&cd=vfe&ved=0CA0QjhxqFwoTCIDZse65s_oCFQAAAAAdAAAAABBT
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CMS Data Flow

4Adapted from Phil Harris’s IAIFI Colloquium slides 

Radiation 
hard ASICs

FPGA 
boards 

320 Tb/s

FAST

• 40 MHz collisions

•  window

• L1 Trigger

12.5 μs

Local CPU 
cluster

1 tb/s

Intermediate

• 100 kHz collisions

• < 500 ms window

• High Level Trigger

CPU 
grid

10 Gb/s

Slow

• 1kHz collisions

• 10s window

• Offline Cluster

https://iaifi.org/talks/2021_03_18_IAIFI_Colloquium_Harris.pdf
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Focus of this talk

5Adapted from Phil Harris’s IAIFI Colloquium slides 

Radiation 
hard ASICs

FPGA boards + 
Neural network

320 Tb/s

FAST

• 40 MHz collisions

•  window

• L1 Trigger

12.5 μs

Select 1 event out of 
400 events, the rest 

is thrown away 
forever!

https://iaifi.org/talks/2021_03_18_IAIFI_Colloquium_Harris.pdf
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CMS L1 Phase-2 upgraded trigger design

6CMS TDR

Overall latency: 12.5 μs

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


/17

Where would the neural nets run?

7CMS TDR

MLP architecture. 
Fully tested and 

integrated into the 
L1 trigger

Tau-tagging 
neural network

B-tagging 
neural network 

CONV 
Architecture

Muon 
momentum 

reconstruction
Muon is actually the current 

system. 

Running

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


Btagging
Physics study — Aidan Chambers
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B-tagging in Level 1 trigger at 
CMS is of great physics interest

1 Introduction

Di-higgs boson production provides a crucial test of standard model (SM) electroweak symmetry breaking as
well as a search for new physics beyond the standard model (BSM). The CMS experiment [1] at the CERN
LHC has a suite of di-higgs searches which are disjoint and complementary across a large mass range and
parameter space.

Di-Higgs boson production can be categorized into resonant and non-resonant categories. SM di-Higgs
boson production is dominated by non-resonant gluon-gluon fusion production, as shown in Figure 1 (left).
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           Luca Cadamuro (LLR)                                19/03/2017       Search and prospects for HH production

Which final state?

￭ Phenomenologically rich set of 
final states 

￭ One H→bb or H→WW decay 
required to keep BR high 
enough 
□ common techniques across 

analyses (e.g. b-tagging) + 
channel-specific challenges 

￭ Complementarity of the 
channels 
□ similar sensitivity to 

non-resonant production 
□ different coverage in mX
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Figure 1: Dominant di-Higgs boson production diagrams via gluon-gluon fusion (left), possible di-Higgs
boson final states (right).

SM di-Higgs production provides insight into the nature of electroweak symmetry breaking through access
to the top-Higgs Yukawa coupling yt and the Higgs boson trilinear coupling �hhh, seen here in the Higgs
field potential:

V =
m2

h

2
h2 + �hhhvh

3 +
�hhhh

4
h4, �hhh = m2

h/(2v
2)

BSM models can lead to non-resonant and resonant di-Higgs production. Non-resonant production would
arise from anomalous couplings t = y0t/y

SM
t , � = �0

hhh/�
SM
hhh and up to 4 new contact interactions which

can lead to large modifications in production cross section and kinematic shapes. Resonant production
proceeds from BSM models where a new particle X decays to two Higgs bosons X ! HH.

The numerous decay possibilities of the Higgs boson leads to many di-higgs final state possibilities. All
the possible di-Higgs boson final states, along with the branching fractions to some final states are shown in
Figure 1 (right). Analyses are performed in final states which prioritize high branching fractions and clean
final states. All searches in CMS all have one Higgs boson decaying to two b jets, while the decay products
of the second Higgs boson vary. The final states considered are H(bb)H(bb), H(bb)H(��), H(bb)H(`⌫`⌫),
and H(bb)H(⌧⌧).

2 CMS Searches

2.1 H(bb)H(bb)

Di-higgs boson searches in the four b jet final state are performed for both resonant [2, 3] and non-resonant [4]
production with 2.3–35.9 fb�1. This final state has the benefit of the highest di-Higgs boson branching
fraction, paired with the challenge of a large multijet background. The resonant analysis is separated into
two categories: a 4-jet resolved search [2] and a 2-jet high mass boosted topology [3].

In the resolved search, a data-driven technique is used to estimate the multijet background. The 95%
confidence level (CL) limits in the resolved search can be seen in Figure 2.

The high-mass boosted search reconstructs each H(bb) system as a single high pT jet, with 105 <
Mj < 130. Jet substructure techniques and a double b-tagger MVA suppress backgrounds. The multijet
background is estimated using data sidebands in the double b-tagger and the invariant mass of the leading

1

 
has the 
largest 
branching 
ratio!

HH → bb̄bb̄

Analysis done by A. Chambers has shown 
significant improvement compared to 

previously used algorithms.
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Btagging model architecture
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Input Vector:  (10 particles * 13 attributes)130 × 1

Conv1D: filters = 20, 
kernel size = 13, stride = 13

ReLU

PointwiseConv1D: filters = 
5, kernel size = 1, stride = 1

ReLU

Flatten

Dense: 20, ReLU

Dense: 10, ReLU

Sigmoid, 1

~1.6k parameters

Btagging model architecture
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~1.6k parameters

Particle 1 Particle 2 … Particle 9 Particle 10

PUPPI input word format

PFCommonObj:  https://gitlab.cern.ch/cms-cactus/phase2/firmware/correlator-common/-/blob/master/dataformats/pf.h#L9-L157

Datatypes.h:  https://gitlab.cern.ch/cms-cactus/phase2/firmware/correlator-common/-/blob/master/dataformats/pf.h#L9-L157

0x0123456789abcdef{

Each letter is a 4 bit number: 0b0000

ufixed<14,12>int<12>Int<11>UnInt<3>

0x[Valid bit][other bits][Particle ID][phi][eta][pt]
Most significant bit 

(MSB) used for validity

“Frame valdid” Data valid  just checks 
for non-zero pt. 

Each particle 
is a 64bit word
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Hls4ml (extended) workflow
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Integration into 
L1 infrastructure

Check 
timing!

Code setup with SeededCone

Seeded Cone 
JetLoop

JetSort 

BTagging

Sorted particles 
list (in )pT

Deregionizer

Particle inputs from different data regions

List of particles
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FPGA Timing
Not often reflected in hls reports
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https://alchitry.com/fpga-timing-verilog

Time takes from one flip-flop, through some combinational logic, 
to propagate to another flip-flop 
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hls4ml models would not always meet timing!
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Reasonable 
resource usage

This model has worst negative slack (WNS) of -5ns

Latency: 60ns, 
II=1
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#1 trick: Convolution to fully-connected layers
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Dense resource 15  20×
10 copies
Conv1D

Pointwise Conv1D

Dense resource 
20  5×

10 copies

Dense …

Dense resource 15  20×

Dense resource 
20  5×

Oftentimes you need to customize your model

Input Vector:  (10 particles * 13 attributes + padding)150 × 1

WNS: -5ns  -0.6ns →
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# 2 trick: Area contraint

14

No constraints

Btag NN

JetLoop

Deregionizer

Jet Sort

WNS: -0.6ns WNS: -0.5ns 

Move btag model to a 
separate SLR and closer 

to output port
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#3 Trick: be explicit!
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For loop
Write down every instantiations

WNS: -0.5ns WNS: -0.3ns 

vivado_hls tends to like more explicit instructions
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#4 trick: Quantization!

16Illustration adapted from Javier Duarte’s talk

ap_fixed<width, integer>
0101.010101111010101

Integer Fractional

Width

16 bit width 9 bit width

Vivado switches from DSPs to LUTs if the multiplication is lower than 9 
bits. There are more LUTs available in the FPGA.

WNS: -0.3ns Meet timing! 🎉

https://indico.cern.ch/event/817013/contributions/3410954/attachments/1835376/3019077/UW_hls4ml_8May2019.pdf
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Summary

17

Integration into 
L1 infrastructure

Check 
timing!

Program the FPGA

Inject Pattern Files 
or Event data

Capture output buffers 
and analyze results

Fully tested



Back up
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Btagging inputs

BTagging

Particle 1 Particle 2 … Particle 9 Particle 10

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

Notation e− e+ u+u− γ KL π+ π− z0 dxy pT η ϕ

Particle: 64 bit word

Set to 0 
for neutral 
particles



• Btagging model training/hls synthesis script is here.


• Training data: (currently on submit) at /home/submit/aidandc/
L1BTag/


• trainingDataTT_PUP_Pad150.h5


• testingDataTT_PUP_Pad150.h5


• sampleDataTT_PUP_Pad150.h5


• jetDataTT_PUP_Pad150.h5


• Tested with a custom hls4ml implementation to make sure hls and 
python get the same results.  


• The “official" hls and vhdl implementation including preprocessing:


• All are compiled with vivado v2019.2 on correlator2. 

Documentation of btagging model from his -> vhdl level
Reproducibility

https://github.com/Duchstf/L1BTag/tree/basic_setup/hls4ml_conversion/official_15feat_9bit
https://github.com/Duchstf/hls4ml/tree/L1B_tag_v2

