EucARD Annual Meeting 11-13 May 2011, CNRS Paris

WP10 - SRF

"SC RF technology for higher intensity proton accelerators & higher energy electron linacs"

O. Napoly (CEA)

WP10-SRF Task 'Patchwork'

	WP 10 Organisation, version 07.04.10							
Task	Subtask	task / subtask leader	leading	participating laboratories	Task description			
			laboratory					
10,1		O. Napoly, O. Brunner	CEA	CEA, CERN	SRF Coordination and Communication			
10,2		S. Chel	CEA	CEA, CERN, CNRS,	SPL Cavities			
	10.2.1	G. Orly	IPN-Orsay	CNRS	Design and fabrication of β = 0.65, 704 MHz elliptical cavity.			
	10.2.2	S. Chel	CEA	CEA	Design and fabrication of β = 1, 704 MHz elliptical cavity.			
	10.2.3	V. Parma	CERN	CERN, CEA, CNRS	Study of interfaces between the cavity and the cryomodule.			
10,3		P. McIntosh	STFC	STFC/Daresbury, UNIMAN, ULANC, CERN	Crab cavities			
	10.3.1	F Zimmerman	CERN	CERN, ULANC	Design, build and test a single LHC crab cavity.			
	10.3.2	R.M. Jones	UNIMAN	UNIMAN	Design, build and test a single CLIC crab cavity.			
	10.3.3	A Dexter	ULANC	ULANC	Design, build and test a LLRF and synchronization systems.			
10,4		S. Calatroni	CERN	CI, CEA, CERN, CNRS/IPNO, DESY, INFN-LNL, II	IPJ Swie <mark>rThin Films</mark>			
	10.4.1	S. Calatroni	CERN	INFN-LNL, CERN	Improve the Nb sputtering technology for low beta cavities.			
	10.4.2	J. Sekutowicz	DESY	DESY, IPJ Swierk	Perform arc sputtering of photo cathodes (Pb).			
	10.4.3	R. Seviour	CI	CI, CEA, CERN, CNRS/IPNO, INFN-LNL	Research on new technologies for thin film depositing of superconductors for SC cavity application			
10,5		R.M. Jones	UNIMAN	DESY, UNIMAN, UROS	HOM Distribution			
	10.5.1	N. Baboi	DESY	DESY	Development of HOM based beam position monitors (HOMBPM).			
	10.5.2	R.M.Jones	UNIMAN	UNIMAN	Development of HOM Cavity Diagnostics and ERLP (HOMCD).			
	10.5.3	U. von Reinen	UROS	UROS	Measurement of HOM Distributions and Geometrical Dependences (HOMDG).			
10,6		M. Grecki	DESY	DESY, TUL, IPJ, WUT, IFJ-PAN	LLRF at FLASH			
	10.6.1	T. Jezynski	DESY	DESY, TUL, WUT	Development of ATCA carrier boards with FPGA and DSP			
	10.6.2	D. Makowski	TUL	TUL, DESY, WUT	Development of AMC and RTM modules required IO functionality			
	10.6.3	M. Grecki	DESY	DESY, TUL, IFJ-PAN	ATCA implementation of cavity resonance control			
	10.6.4	J. Szewinski	IPJ	IPJ, DESY	Development of beam based longitudinal feedbacks for the ATCA based LLRF system			
10,7		J. Teichert	FZD	FZD, HZB	SCRF gun at ELBE			
	10.7.1	T. Kamps	HZB	HZB, FZD	Slice diagnostics system			
		R. Xiang	FZD	FZD	Improvement of preparation chamber for GaAs photo-cathodes			
	10.7.3	J. Teichert	FZD	FZD, HZB	SCRF gun experimental tests			
10,8	1	W. Kaabi	LAL-Orsay	LAL	Coupler Development at LAL			
	10.8.1	W. Kaabi	LAL-Orsay	LAL	Cleaning studies on samples			
	10.8.2	M.Lacroix	LAL-Orsay	LAL	Automation of coupler washing			

WP10-SRF Fifteen Institutes

Pushing Accelerator Performance Barriers

R&D is needed to advance the Superconducting RF Technology for Accelerator applications

- → High Gradient barrier (ILC, SPL, ESS, etc...) → Task 10.2, 10.4
- → High Q0 barrier (efficiency, duty cycle) → Task 10.4
- ➤ High RF Power barrier (HPPAs)
 → Task 10.2, 10.8
- → High Stability and Reliability barriers (ILC, XFEL, ADS) → Task 10.5, 10.6
- \triangleright Low Beta barrier (e.g. Spiral2 β=0.07) \rightarrow Task 10.4
- ➤ Industrialization and cost barrier (ILC) → Task 10.8
- New Applications barrier:
 - ➤ Crab cavities (LHC, ILC)
 → Task 10.3
 - ➤ SC-RF Gun (electrons)
 → Task 10.4, 10.7
 - Energy Recovery Linac (ALICE, BERLinPro) → Task 10.5, 10.7

WP10-SRF 2nd Annual Review 4-5 May 2011, IN2P3 – Inst. Phys. Nucl. Orsay

42 Participants, including the 2 Coordinators + 7 Task Leaders

14/15 Partner Institutes represented

Hui-Min Gassot

WP10-SRF 2nd Annual Review 4-5 May 2011, Cockcroft Institute, Daresbury

https://indico.cern.ch/conferenceDisplay.py?confld=118190

33 talks, including 3 from PhD students

Ben Hall,	Lancaster University	T10.3
Pei Zhang,	Manchester University, working at DESY	T10.5
Thomas Fligsen,	Rostock University	T10.5

04/2010-03/2011 WP10 Campaign in a Nutshell

Last year campaign has been dominated by the Beam Developments

First beam in a fully SC RF gun

(Thin films + SRF Gun)

Beam excited HOMs measured at FLASH 3.9 GHZ module (HOM)

(cf. 2nd highlight talk by Roger Jones)

Beam energy stability improved at FLASH

(LLRF)

Beam Slice Emittance measurements at ELBE SCRF gun

(SRF Gun)

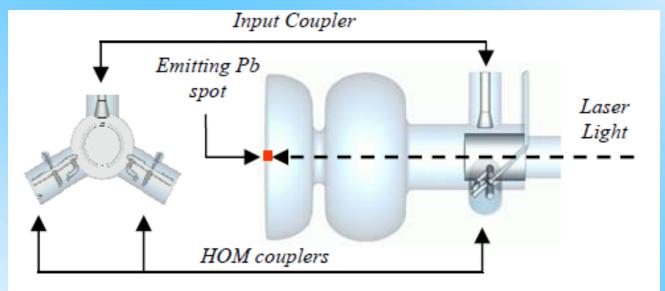
(cf. 1st highlight talk by Jeniffa Rudolph)

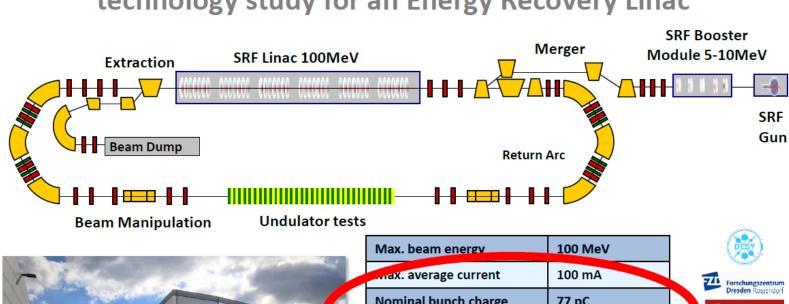
The Design and Technology Developments show less rapid progress.

Beam Developments

T10.4: Pb/Nb SRF Gun

Aim of the study (M36): produce and test a fully SC RF Gunusing SC Pb photocathode deposited on SC Nb 1-½ Cavity



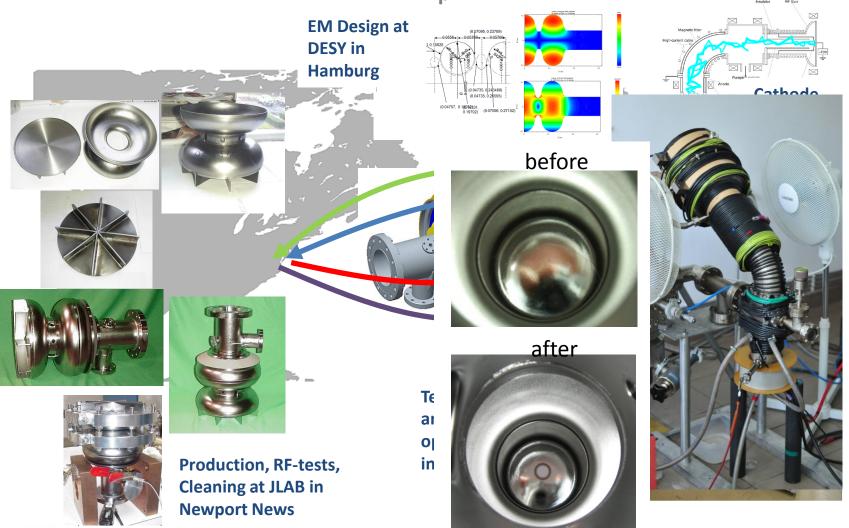

Figure 1: 1.6-cell SRF-injector cavity with 2 HOM couplers and an input coupler.

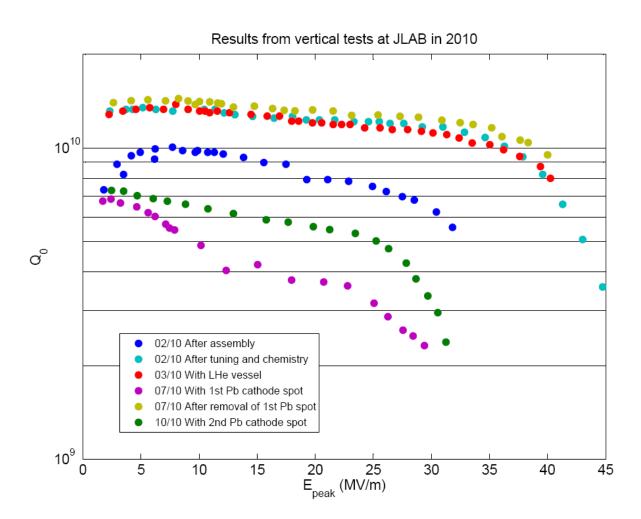
T10.7: SRF Gun

At HZB we are working on BERLinPro, a physics and technology study for an Energy Recovery Linac

Max. beam energy	100 MeV		
wax. average current	100 mA		
Nominal bunch charge	77 pC		
Max. rep. rate	1.3GHz		
ermalized emittance	< 1mm mrad		
Cryo load @ 1.8K	240 W		

The SRF Gun needs to fulfill these challenging target parameters

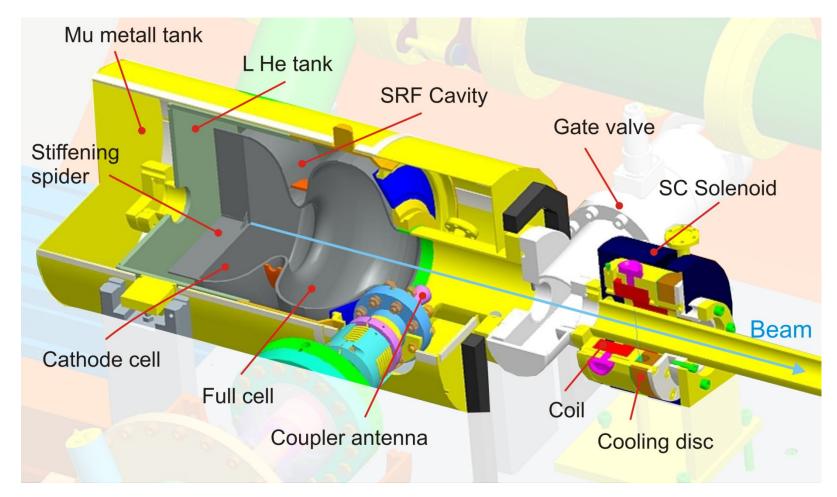




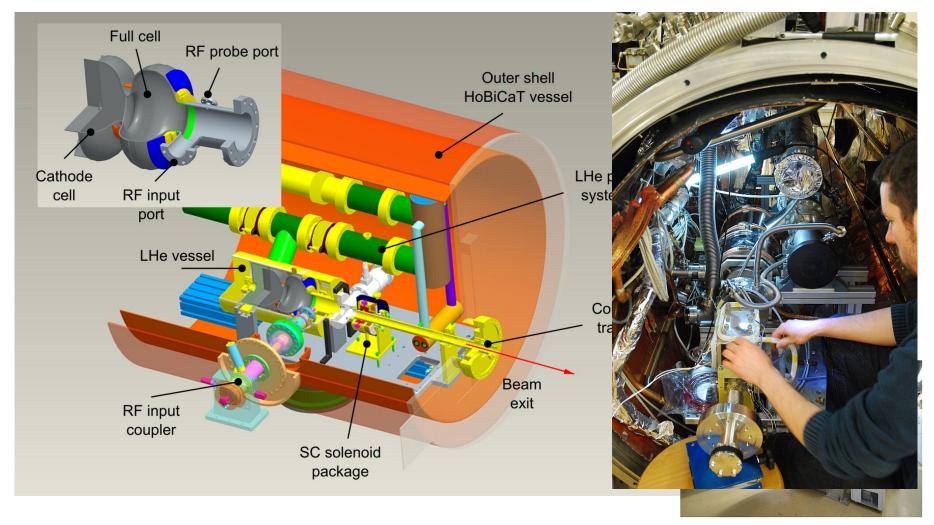
The cavity collected some 20.000 air miles... keeping its Q vs E_{pk} performance...

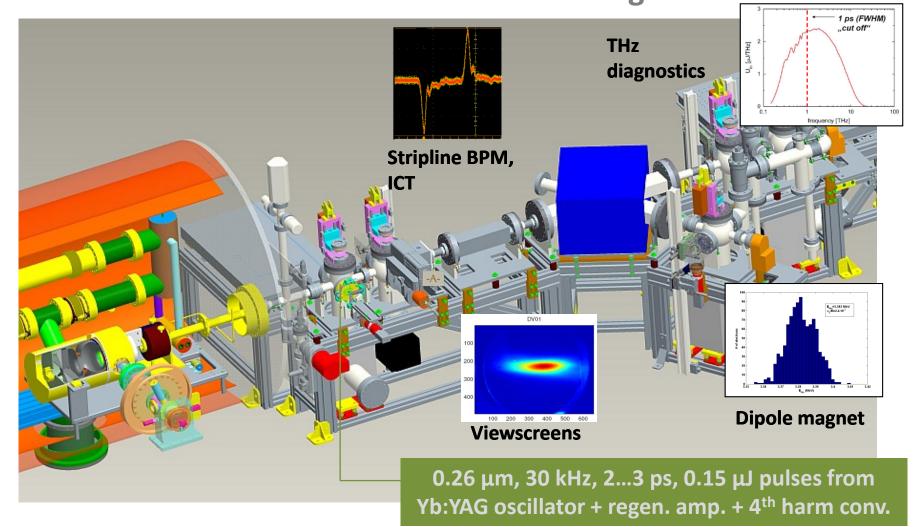
Results from vertical tests at JLAB, from assembly of cavity to delivery for Berlin

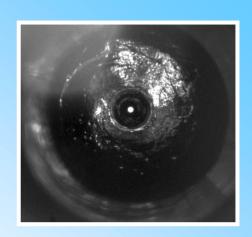
02/10 Initial test after assembly, tuning, BCP etching and rinsing of the cavity. The field flatness was only 66%.

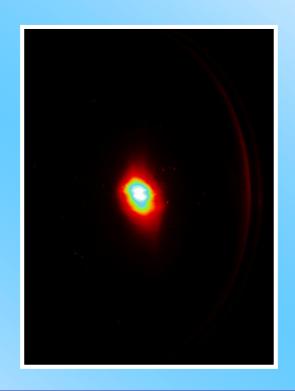

02/10 Further tuning improved field flatness to 94%, the following BCP treatment improved the RF performance.
03/10 After installation of the helium vessel, limitation by moderate field emission.
07/10 With first cathode coatin

07/10 With first cathode coating
07/10 Test after accidential loss
of lead cathode and removal of
remnants by grinding and BCP.
10/10 With second cathode
coating


Complete cold mass: cavity, coupler, gate valve, solenoid and beam pipe

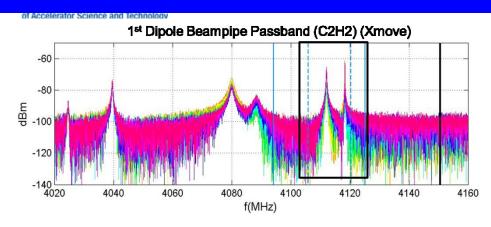

Completed cold mass now inside cryomodule of HoBiCaT.

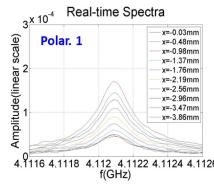

Two more systems required for beam test: drive laser and electron beam diagnostics

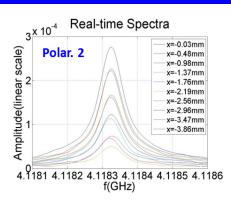


T10.4 + T10.7 : Pb/Nb SC-RF Gun Operation

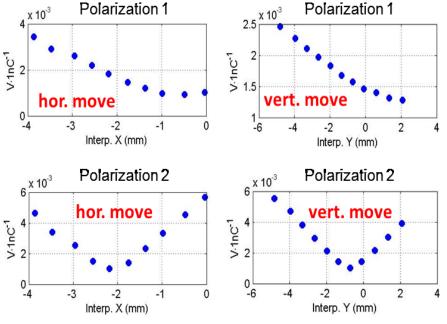
First beam of photoelectrons from Pb cathode generated and accelerated at 21st April 2011, < 2 years after project approval

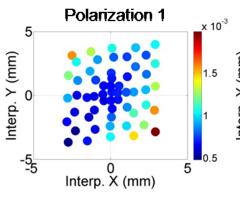


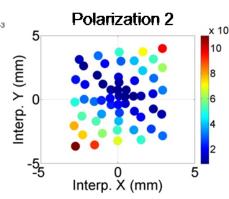




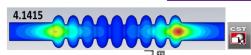
Task 10.5: 1st Dipole Beampipe Modes



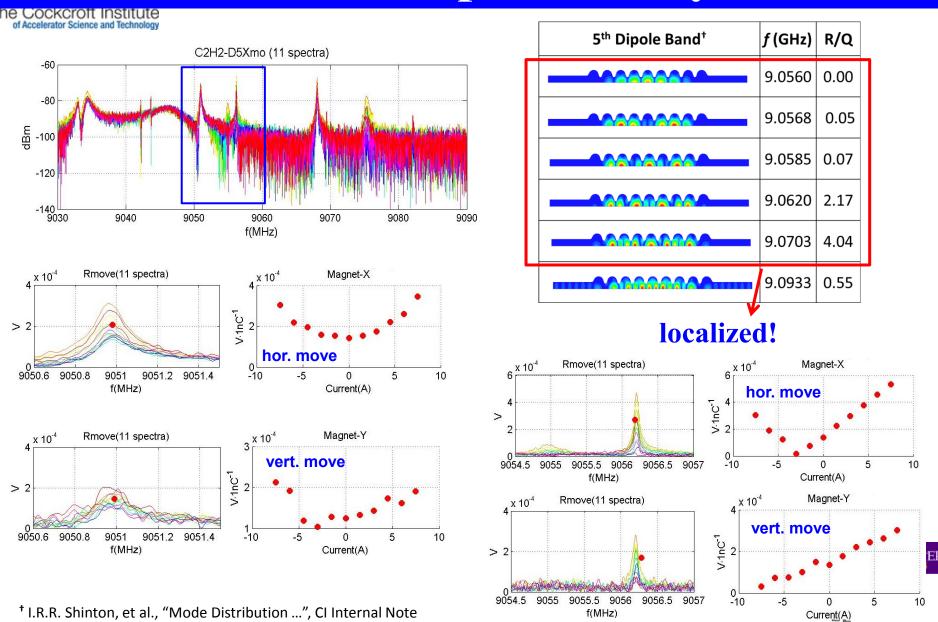



Lorentzian fit to get mode amplitude

$$y = y_0 + A \cdot \frac{w^2}{(x - x_0)^2 + w^2}$$

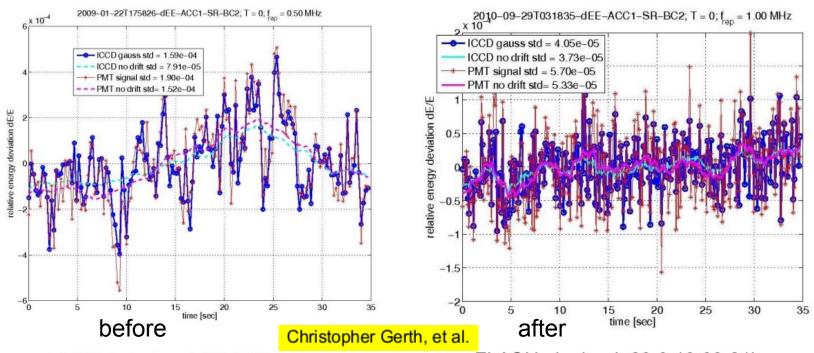


17



4.1414

Task 10.5: 5th Dipole Cavity Band



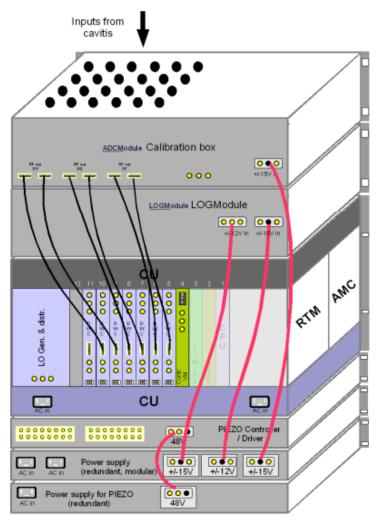
WP10.6 (LLRF at FLASH)

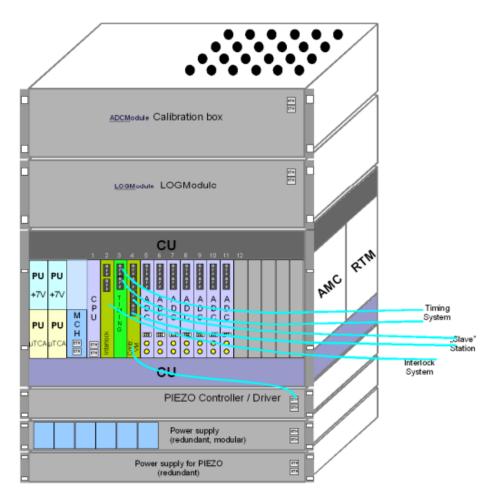
from ATCA (Advanced Telecommunications Computing Architecture) to µTCA

- µTCA decided as the hardware platform (formerly ATCA)
 - most of the ATCA development transfered to the new platform
 - small (3-4 months) delay in milestones not affecting the final deliverables
 - installation of the system at FLASH will be done during the next shutdown period (September 2011 – March 2012)
- even with temporarily installed (03.2010) LLRF system (SimconDSP) the beam performance was significantly improved (see next slide).

Energy stability after FLASH upgrade

- FLASH elogbook 22.1.09 18.08h
- ACC1 off-crest
- Typical values of dE/E = 1.5e-4


- FLASH elogbook 29.9.10 03.21h
- ACC1, ACC39 on-crest
- Best results: dE/E = 0.5e-4


This is not only effect of LLRF upgrade but several other system upgraded as well.

But after upgrade the LLRF operation has improved a LOT – *official* opinion of FLASH operators and experts.

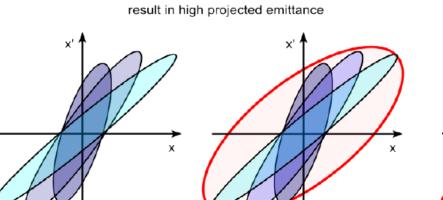
uTCA LLRF System

back-side view

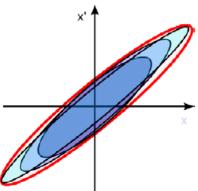
front-side view

Status of system components

- μTCA carrier board under debugging
- fast ADC boards manufactured and tested
- downconverter board manufactured and tested
- piezo control board under debugging
- vector modulator PCB routing
- ATCA board with ultra-fast ADCs for testing of the direct sampling – under debugging and tests


T10.7: Slice Emittance Measurement

From Projected Emittance to Slice Emittance



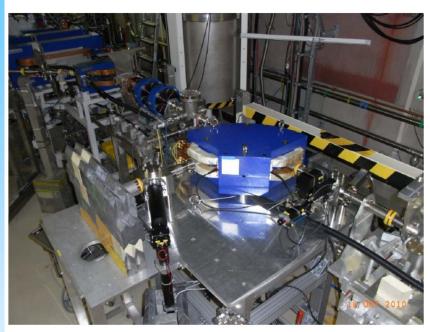
- Normally: image beam on screen, measure projection of whole bunch
 - → 'Projected emittance'
- 'Slice Emittance': emittance as function of longitudinal position in bunch
 - Slices experience different focusing effects
 - Relevant for: emittance compensation schemes, FEL operation

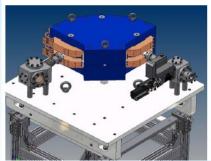
Slices of different orientation

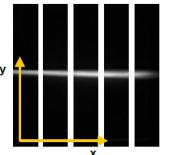
Aligned slices result in lower projected emittance

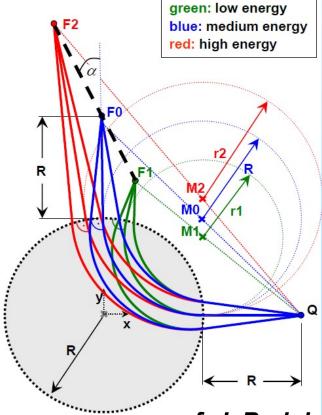
Blue: Slices of different emittance and orientation

Red: Resulting projected emittance



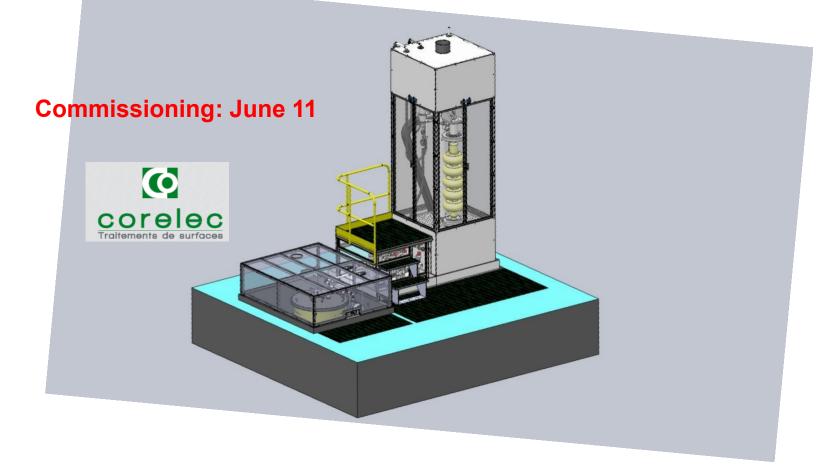

T10.7: Slice Emittance Measurement




Browne-Buechner Spectrometer

cf. J. Rudolph's talk

Design and Technology Developments



T10.2 Proton Cavities Vertical Electropolishing for SC cavities

CORELEC Industries chosen for the set-up fabrication

- Contract signed on november 2010
- Single-tank set-up has been chosen
- Local Safety Meeting on May 10th.

Irfu

saclay

T10.2 Proton Cavities CONSTRUCTION PROGRESS @ CORELEC

Irfu

saclay

Main cabinet

Electric cabinet

T10.2 Proton Cavities CONSTRUCTION PROGRESS @ CORELEC

acid tank with teflon inner coating


pump + filter

fluid distribution valves (PFA)

T10.2 Proton Cavities PROGRAMMING OF THE AUTOMAT

- Automated process piloted through a touch screen
- Manual mode or programmed sequences

T10.2 Proton Cavities PREPARATION OF THE AREA AT CEA

Civil engineering and floor covered with acid-resistant painting

Set-up for cavity preparation

T10.3 CLIC Crab Cavities RF control: LANCASTER Kick and tolerance for 3 TeV CM

To minimise required cavity kick R12 needs to be large (25 metres suggested) Vertical kicks from unwanted cavity modes are bad one needs R34 to be small. For 20 mrad crossing and using as 12 GHz structure

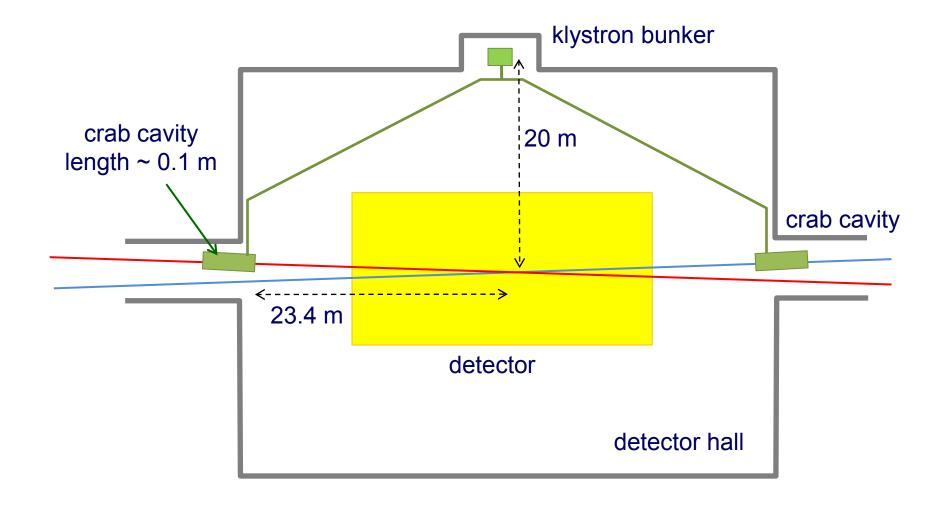
$$V_{\text{crab}} = \frac{\theta_c E_o c}{2R_{12} \omega} = \frac{2 \times 10^{-2} \times 1.5 \times 10^{12} \times 3 \times 10^{8}}{2 \times 25 \times 2\pi \times 12 \times 10^{12}} = 2.4 \text{ MV}$$

Error in kick tilts effective collision from head on.

Luminosity Reduction Factor

$$S \approx \frac{1}{\sqrt{1 + \left\{ \frac{\sigma_z \theta_c}{4\sigma_x} \frac{\left(\left| \delta V_1 \right| + \left| \delta V_2 \right| \right)}{V_{crab}} \right\}^2}}$$
 gives

amplitude error on each cavity	1.0%	1.5%	2.0%	2.5%	3.0%
luminosity reduction	0.9953	0.9914	0.9814	0.9714	0.9596



T10.3 CLIC Crab Cavities RF control: LANCASTER Waveguide routing?

T10.3 CLIC Crab Cavities RF control: LANCASTER **CLIC Solution**

Wakefields

Large irises

Small number of cells

Strong damping

Phase and amplitude control

Passive during 156 ns bunch train

Beamloading compensation

High energy flow through cavity

small number of cells

high group velocity

low efficiency

Phase synchronisation (4.4 fs)

Same klystron drives both cavities Temperature stabilized waveguide

Phase reference

Optical interferometer

Phase measurement calibration

DBM and

Down conversion to ~ 1 GHz.

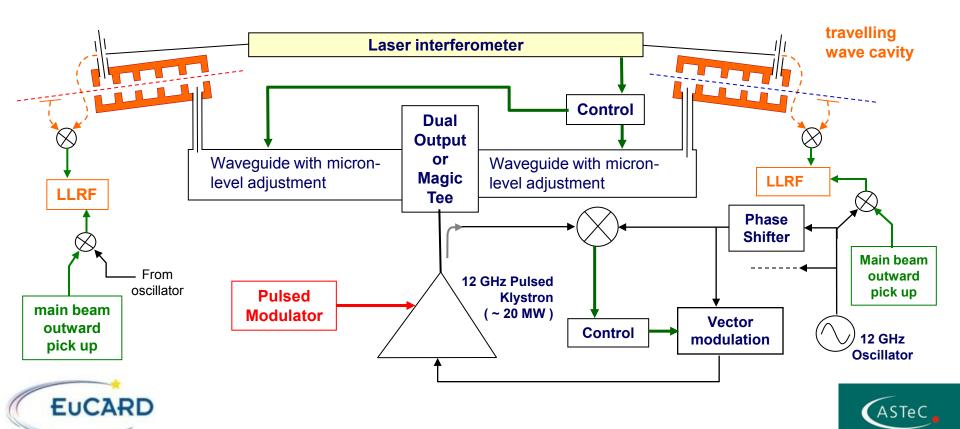
Digital phase detection

Staggered sample and hold

Phase stability

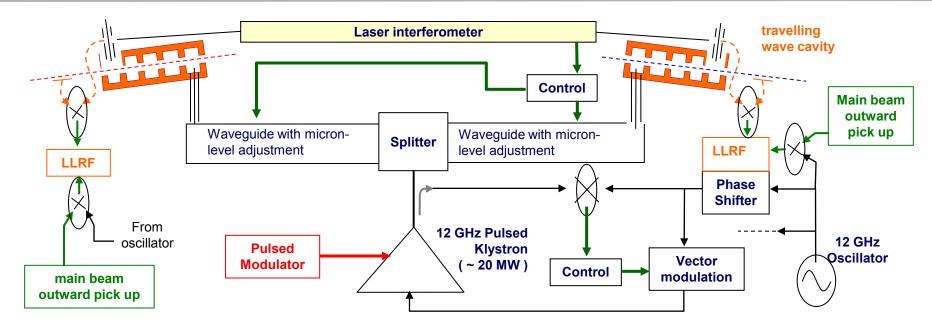
Thick irises

Strong cavity cooling


T10.3 CLIC Crab Cavities RF control: LANCASTER Crab Cavity RF

- Beamloading constrains us to high power pulsed operation
- Intra bunch phase control looks impossible for a 140 ns bunch

SOLUTION

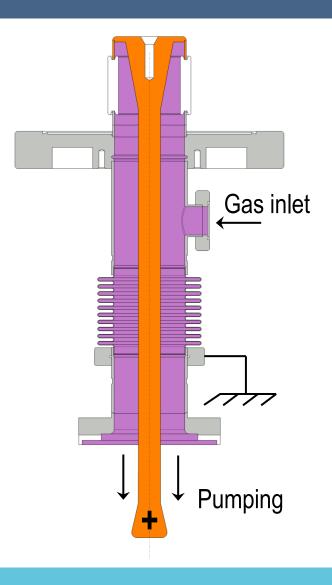

- One Klystron (~ 20 MW pulsed) with output phase and amplitude control
- Intra bunch delay line adjustment for phase control (i.e. between bunch trains)
- Very stable cavities

T10.3 CLIC Crab Cavities RF control: RF Layout and Procedure

Once the main beam arrives at the crab cavity there is insufficient time to correct beam to cavity errors.

These errors are recorded and used as a correction for the next pulse.

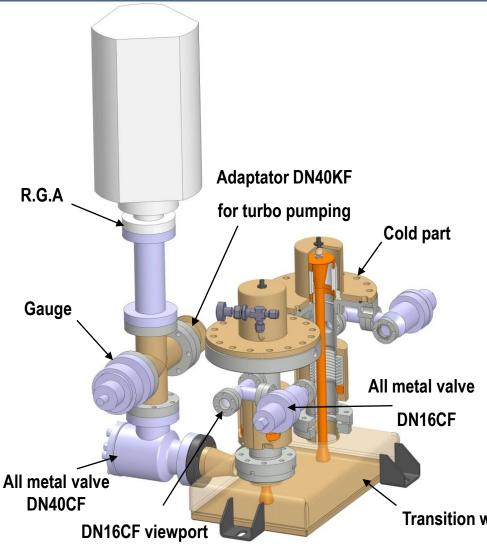
- 0. Send pre-pulse to cavities and use interferometer to measure difference in RF path length (option1)
- 1. Perform waveguide length adjustment at micron scale (option 2 use measurements from last pulse)
- 2. Measure phase difference between oscillator and outward going main beam
- 3. Adjust phase shifter in anticipation of round trip time and add offset for main beam departure time
- 4. Klystron output is controlled for constant amplitude and phase
- 5. Record phase difference between returning main beam and cavity
- 6. Alter correction table for next pulse



T10.8: LAL Coupler Plasma Discharge Cleaning

Plasma discharge cleaning of power coupler

- Gas discharge introduction into internal coupler part
- Controlled pumping to reach 10⁻¹ mbar pressure and create a laminar pumping flux
- Direct current bias application with a positive antenna voltage and a grounded coupler corps
- Plasma creation at all power coupler internal parts

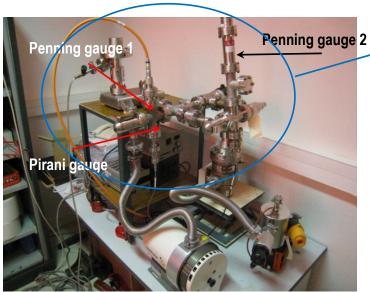


T10.8: LAL Coupler Plasma Discharge Cleaning

Experimental assembly

- Treatment of two cold coupler parts and the transition wave guide box (TWG) in the same time
- Gas inlet in the top of cold coupler parts and pumping at the exit of the TWG to get a laminar flux
- The RGA for pumped gas analysis
- Copper samples could be placed at the internal of the coupler for SEY measurements after treatment.

Transition wave guide box (TWG)



T10.8: LAL Coupler Plasma Discharge Cleaning

Experimental assembly

System vacuum characterization before plasma discharge cleaning

WP10 Deliverables: 15 units

Ref.	N°	Deliverable Name	Deliverable Type	Task	Delivered by Contractor (s)	Planned (in months)
10.4.1	1	QE data for Pb/Nb deposited photo cathode samples	Report	Thin Films	DESY, IPJ	12 🗸
10.7.1	2	Results of slice measurements	Report	SCRF Gun	FZD, HZB	24 🗸
10.8.1	3	Test and operation of the coupler preparation procedure	Report	Coupler Development	CNRS-LAL	24 +10
10.4.4	4	New thin film techniques for SC cavities and photocathodes	Demonstrator	Thin Films	ULANC	30
10.2.1	5	Results of SC proton cavity tests (β = 1 and β = 0.65)	Report	SPL cavities	CEA, CNRS- IPNO	33
10.7.2	6	Results for GaAs photocathodes	Report	SCRF Gun	FZD, HZB	33
10.3.1	7	LHC crab cavity final report	Report	Crab cavities	CERN	36
10.3.2	8	CLIC crab cavity final report	Report	Crab cavities	UNIMAN	36
10.3.3	9	LHC and CLIC LLRF final reports	Report	Crab cavities	ULANC	36
10.4.2	10	RF measurements on thin film deposited QWR prototype	Report	Thin Films	CERN	36
10.4.3	11	Cold test results for the test cavities w/out the deposited lead photo cathode	Report	Thin Films	DESY	36 ✔
10.5.2	12	Report on HOM experimental methods and code	Report	HOM distribution	UNIMAN	40
10.6.1	13	Report on system test and performance	Report	LLRF at FLASH	DESY	42
10.1.1	14	SRF web-site linked to the technical and administrative databases	Web-Site	Coordination	CEA, CERN	48
10.5.1	15	HOM electronics and code to probe beam centring on 3.9 GHz cavities	Report	HOM distribution	DESY	48

Conclusions

- All Tasks have continued their efforts.
- Some tasks are delayed, but within 48 months
- Some task are *nearly* closed (e.g.T10.3.3, T10.4.2, T10.7.1)
- Many challenging
 - RF designs,
 - Technology Developments,
 - Realizations,
 - Beam experiments (FLASH, ELBE)

ahead of us.

Thank You for Your Attention

