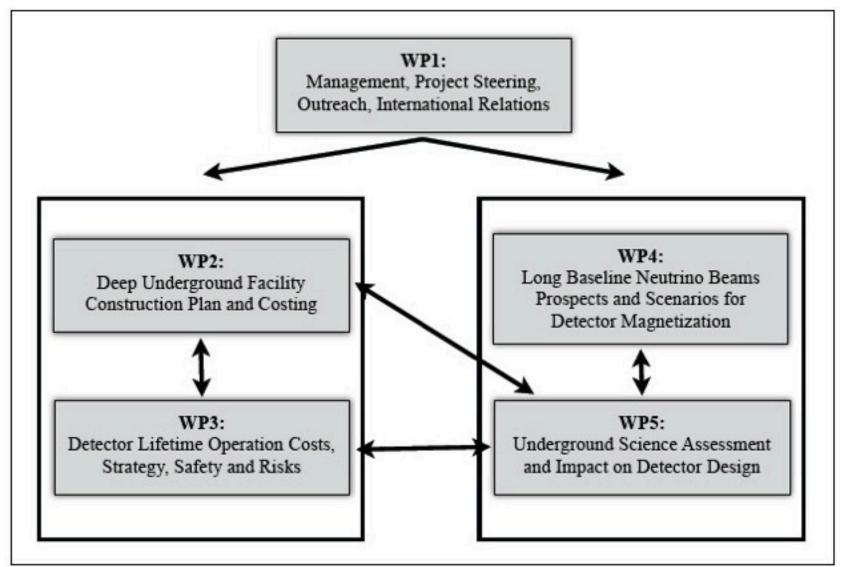


LAGUNA-LBNO
Design Study



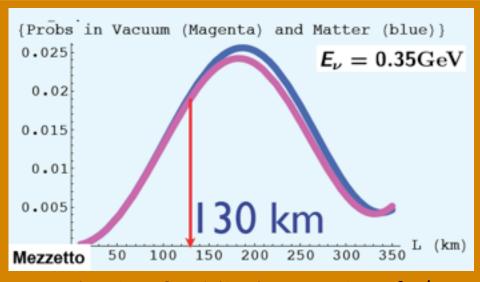
I. Efthymiopoulos - CERN

EUCARD - Neu2012 Meeting Paris - May 10, 2011

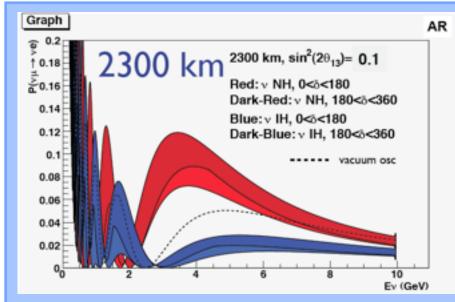
Ilias Efthymiopoulos - EUCARD - NEu2012 Meeting, Paris May 10, 2011

- WP4 Long baseline Neutrino Beams Prospects and Scenarios for Detector Magnetisation
 - Study the impact of SPS upgrade to neutrino beams
 - Feasibility of intensity upgrade of CNGS
 - Conceptual design of CN2PY v-beam
 - V-beam focusing studies
 - target station design
 - 3-D layout studies
 - Feasibility study of a 30-50 GeV high-power (<2MW) PS</p>
 - Definition of the accelerators and beamline layouts at CERN
 - Study of the Magnetic Configuration of the LAGUNA detector

Build on the CNGS experience – study beams with good physics reach that can be realized in the framework of 10–15 years


- WP4 Long baseline Neutrino Beams Prospects and Scenarios for Detector Magnetisation
 - Study the impact of SPS upgrade to neutrino beams
 - Feasibility of intensity upgrade of CNGS
 - Conceptual design of CN2PY v-beam
 - V-beam focusing studies
 - target station design
 - 3-D layout studies
 - Feasibility study of a 30-50 GeV high-power (<2MW) PS</p>
 - Definition of the accelerators and beamline layouts at CERN
 - Study of the Magnetic Configuration of the LAGUNA detector

Build on the CNGS experience – study beams with good physics reach that can be realized in the framework of 10–15 years

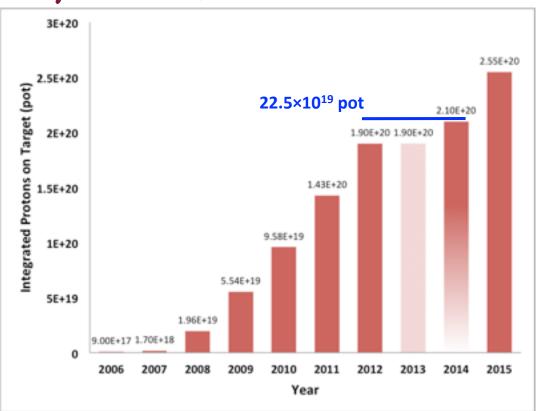


Long-Baseline v-beams from CERN

CERN-Frejus (130km) & CERN-Pyhasalmi(2300km): Very short/very long baseline combination for unique physics opportunities in Europe

- Determine CP-violation by comparison of v/
 anti-v in absence of competing matter effects
- □ Very low energy beam, huge (WC) detector
- □ ... and synnergies:
 - CERN-Frejus: adequate baseline/energy for βbeam

- Determine CP-violation and mass degeneracy by spectrum measurement and resolve degeneracies and so called "π-transit" effect
- □ arXiv:0908.3741.v1 for "Magic distance"
 - CERN-Pyhasalmi: adequate baseline for Neutrino-Factory from CERN or other labs (~7'000 km)



What future for CNGS?

- The presently approved program will be completed by 2014
 - assuming 4.7×10^{19} pot/y for 2011, 2012

Note:

- Even after switching the beam off,
 CNGS won't be cost neutral
 - services must be maintained not to let the (highly activated equipment and tunnels degrade
 - at a certain time the facility
 must be dismantled
- Is always advantageous if a new use of the equipment & tunnels is found

CNGS Technology Upgrade Possibilities

□ Limitations:

- key elements of the secondary beam line: target, horns, beam windows
- layout and RP considerations, SPS RF and beam extraction system

□ CNGS upgrade ⇔ SPS upgrade:

- Possibilities will be studied within the LHC Injector Upgrade project (LIU) and followed in LAGUNA-LBNO
 - o 750kW may be reachable, going beyond would require substantial consolidation of the facility

Int. per PS batch	# PS batches	Int. per SPS cycle	200 days, 100% efficiency, no sharing	200 days, 55% efficiency, no sharing	200 days, 55% efficiency, 60% CNGS sharing
		[prot./6s cycle]	[þot/year]	[pot/year]	[pot/year]
2.4×10 ¹³ - Nominal CNGS	2	4.8×10 ¹³	1.38×10 ²⁰	7.6×10 ¹⁹	4.56×10 ¹⁹
3.5×10 ¹³ - Ultimate CNGS	2	7.0×10 ¹³	2.02×10 ²⁰	1.11×10 ²⁰	6.65×10 ¹⁹

750kW design limit for the target

working hypothesis for RP calculations

M.Meddahi, E.Schaposnicova - CERN-AB-2007-013 PAF

A staged approach towards high-intensity facilities

□ ~1MW an important (necessary) barrier

JPARC

T2K (300km)

- **0.11MW** operation in 2010

T2K

(300km)

- expected **0.75MW** gradually ~2014

T2K (300km)

T2O(658km)

expected 1.66MW operation, by >2014

FNAL

NUMI/MINOS (700km)

O.3MW sustained operation

NUMI/NOVA

(700km off-axis)

- 0.75MW upgrade (~2013)

LBNE/DUSEL

(1300 km)

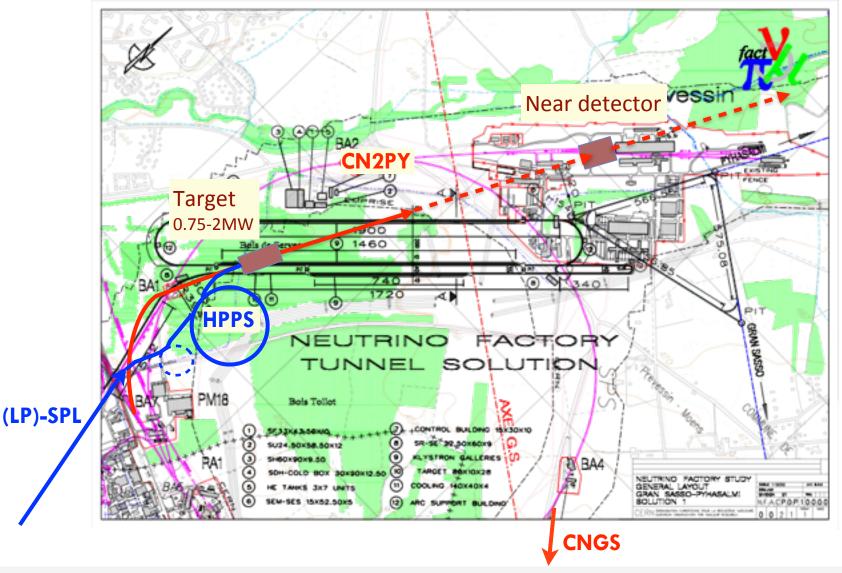
2MW operation requires Project-X

CNGS (732km)

O.3MW sustained operation, O.5MW if no beam sharing

CNGS+ (732km) or CN2PY (2300km)

- **0.75MW** "ultimate", requires SPS and injector upgrade


CN2PY(2300km) CN2FR(130km)

 2MW operation requires LP-SPL+HPPS, or HP-SPL+Accum

LAGUNA-LBNO, EUROV FP7 Design Studies

CERN v-beam to Pyhasalmi - CN2PY

CN2PY Long-Baseline v beam

- Re-use existing CNGS equipment for the proton beam line and as much as possible from the secondary beam
 - CNGS anyhow must be dismantled
- Target station design for 1(2) MW facility
 - Upgraded engineering for the CNGS target station, follow R&D for LBNE, T2K beams
 - Maintain target-horn separated; makes a HUGE difference in the design and operation
 - key advantage of the high beam energy
- □ The decay tunnel will be shorter (~200-300m) but steeper (~10 degrees)
- □ The near detector can be located in the CERN Prevessin area
 - design issues for such a detector to consider

LP-SPL & HPPS for CN2PY

- □ Aim for 1(2) MW at 50 GeV beam
 - 1.4E14 ppp, 1.2s cycle
- A LP-SPL would be sufficient
 - Power at injection (3 GeV): 120 kW
- □ J-PARC is a good example of such configuration
- □ Design to consider synergies with other v-beam options and possible needs for other CERN programs
- □ Layout (3-D) of possible implementation of such facilities at CERN
 - consider safety arguments (feedback from EUROnu studies)

v beams at CERN - future possibilities

Stage I - Initial phase, sub MW facilities (~2015_{approval} / ~2020_{data-taking})

- Long baseline v-beams from SPS (400 GeV) CN2PY
 - CNGS technology, sub-MW class facility
 - Intensity upgrade, new focusing scheme for low v-beam energies
 - Profit from SPS upgrade to high-power (750 kW)
- Short baseline v-beam from PS (20 GeV) PSNF
 - Dedicated experiment on sterile neutrinos
 - Test bed for detector and targetry R&D, x-section measurements

R&D projects for future facilities

Stage II - Upgraded facilities - MW range (~2018_{approval} / ~2025_{data-taking})

- Continue exploiting CN2PY beam
- Upgrade using LP-SPL as proton driver, new HPPS (30 GeV)
 - ~MW class facility
 - synergies with other programs at that time?
 - HPPS to feed the FT program while SPS being upgraded for HE-LHC?

R&D projects for future facilities

- Stage III The BIG picture ultimate facilities (~2020_{approval} / ~20?5_{data-taking})
- Super beams, β-beams, Neutrino Factory
 - HP-SPL and new accelerators, MMW class facilities

Summary

- □ LAGUNA-LBNO WP4 will allow a complete spectrum of vbeams studies to be made
 - two options: short and long baseline will be studied
 - CERN centric, profiting from existing infrastructures and available experience
 - The studies for beams are in line and further extend EUROnu options

- □ The CN2PY beam option offers several advantages towards a staged, ready-to-start, V-program for CERN and Europe
 - Please treat MWs with care!