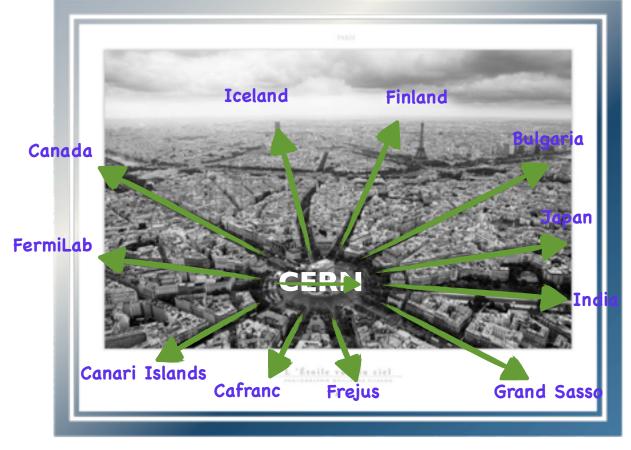


Long Baseline v beams at CERN

EUCARD - Annual Meeting Paris - May 12, 2011

I. Efthymiopoulos - CERN

Long BaselinevbeamsPossibleat CERN



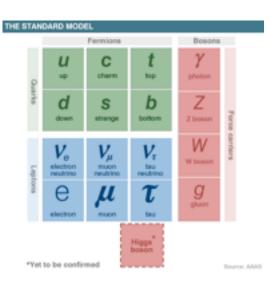
EUCARD - Annual Meeting Paris - May 12, 2011

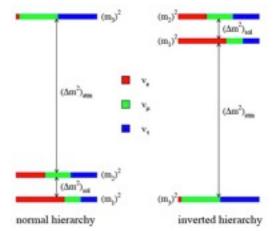
I. Efthymiopoulos – CERN

Long Baselinev beamsPossibleat CERN

EUCARD - Annual Meeting Paris - May 12, 2011

I. Efthymiopoulos – CERN


CERN

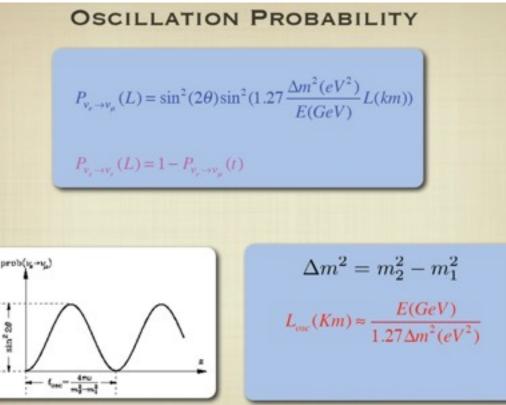

Why study v physics & beams ?

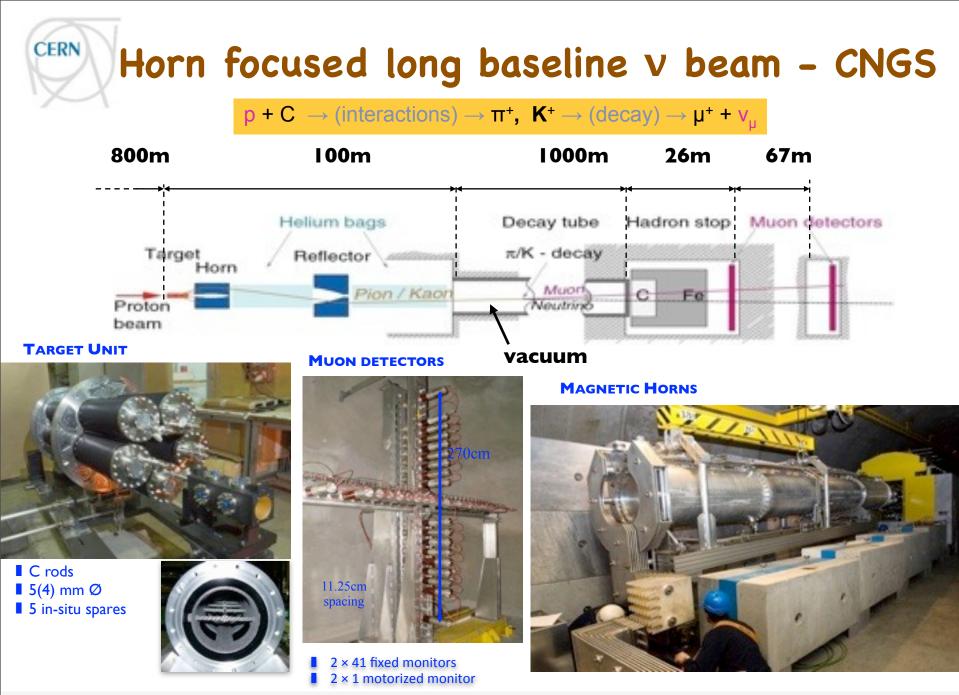
- vs are part of the Standard Model (SM), yet the least understood particles
 - \blacksquare yet there are in large abundance around us: $\textbf{6.5}\times10^{10}$ solar ν_s traverse 1 cm² per second in Earth
 - we know they have masses because they oscillate, but which and why (hierarchy)? are there only 3-neutrino families?

vs call for an extension to the SM

- as they seem to have (small) masses that is not foreseen
- probe for physics beyond the SM but what type of extension is required? trivial of hints for a more fundamental theory?
- is there CP-violation in the leptonic sector as observed for the quarks?
 - this could impact the cosmological models for the matter-antimatter asymmetry in the universe
- the ultimate theory of matter must include quarks and leptons
 - full understanding of the leptons/neutrinos is required
 - can't be done with LHC or ILC, CLIC

CERN

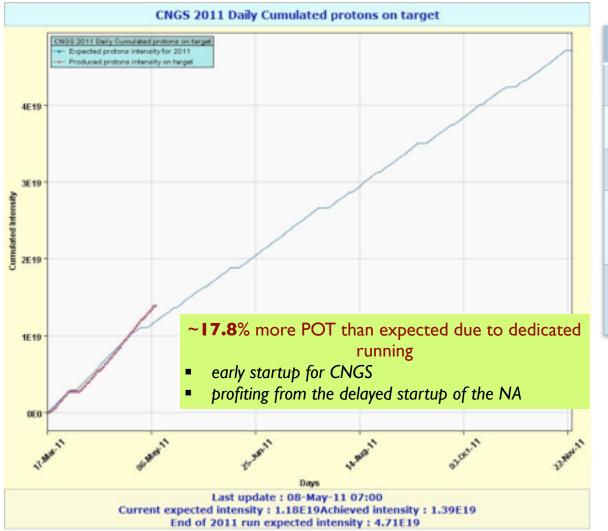

Why long baseline v beams?


- \square easy(!!) way to produce v and study their properties
 - alternatives: v from reactors, beta-decay
- Iong, very long, or short beam lines depends on the value of the parameters

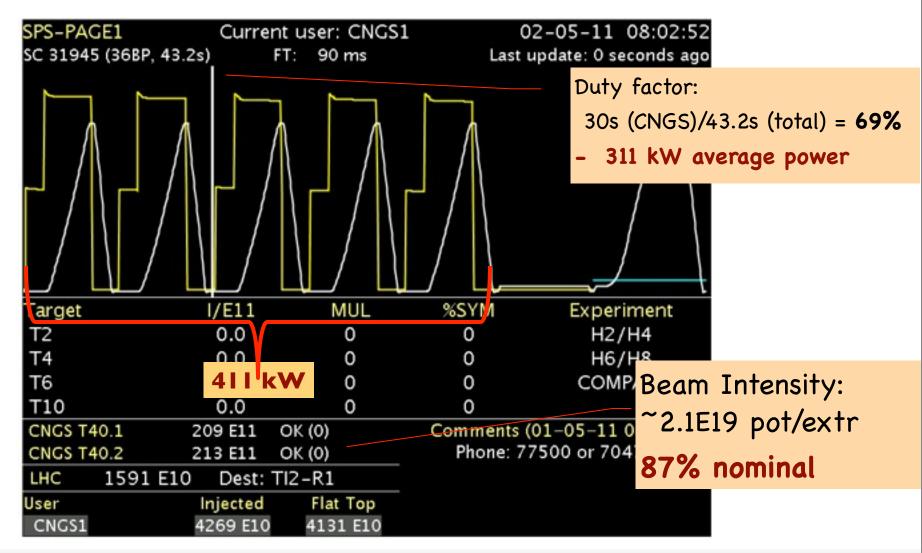
Courtesy JJ Gadenas

D Typical configuration:

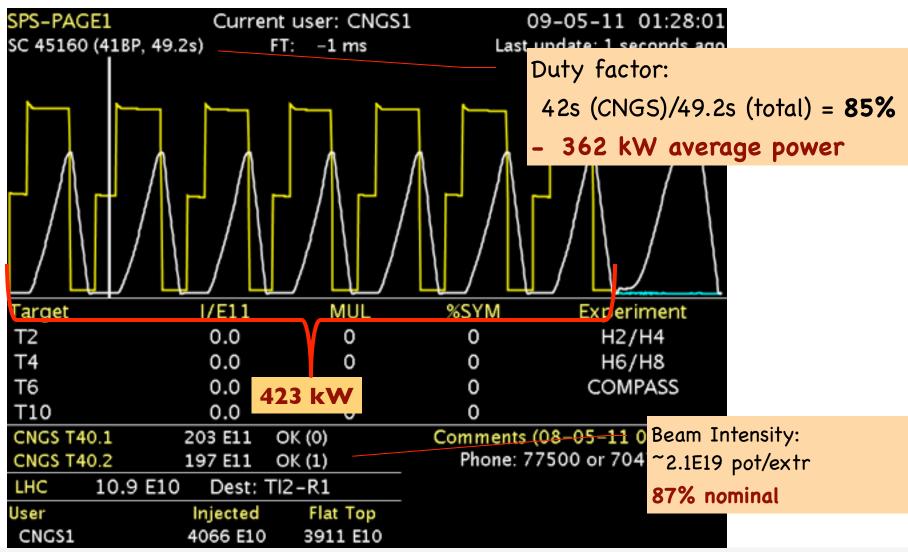
- v-source: super beam, beta-beam, neutrino factory
- v-detectors:
 - near detector
 - far detector (one or many)
- long, very long, or short beam lines depends on the value of the parameters



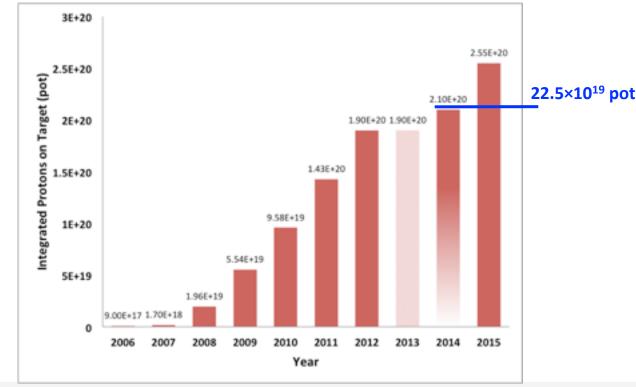
- \square CERN has a long **tradition** building v beams
 - **Gargamelle** collaboration and discovery of the **neutral currents**, horns discovered at CERN by S. Van Der Meer
- \Box CERN presently runs **CNGS** that is one of the three long baseline v beams worldwide
 - CNGS offers a a valuable experience to build upon for future projects
- CERN has the possibility with the (HP)-SPL to provide the proton driver that is required for the high-power options of the v-beams
- \Box CERN has lot of **infrastructure** that is important asset for any project also for v beams!
- v-physics is the size of the project that can run in // or interleaved with the LHC and its upgrades
 - interesting alternative physics program for a sizable EU v-physics community; potential discoveries that should always be in the agenda of big labs!
- whatever program gets approved it must be in the GLOBAL perspective with international worldwide collaboration with other labs and institutes


CNGS v-beam performance

Year	РОТ
2008	1.78×10 ¹⁹
2009	3.52×10 ¹⁹
2010	3.48×10 ¹⁹
2011	1.39×10 ¹⁹ (4.7×10 ¹⁹)
Total	10.17 ×10 ¹⁹ (13.48×10 ¹⁹)



CNGS v-beam performance


CNGS v-beam performance

CNGS – Planning

- □ The presently approved program will be completed by 2014-2015
 - assuming 4.7 × 10¹⁹ pot/y for 2011, 2012
- However by 2013 we could reach ~19 × 10¹⁹ which depending on the results obtained may call for an early stop of the facility

CNGS Technology Upgrade Possibilities

Limitations:

- key elements of the secondary beam line: target, horns, beam windows
- layout and RP considerations, SPS RF and beam extraction system
- $\Box \quad CNGS upgrade \Leftrightarrow SPS upgrade:$
 - Possibilities will be studied within the LHC Injector Upgrade project (LIU) and followed in LAGUNA-LBNO
 - **750kW** may be reachable, going beyond would require substantial consolidation of the facility

Int. per PS batch	# PS batches	Int. per SPS cycle	200 days, 100% efficiency, no sharing	200 days, 55% efficiency, no sharing	200 days, 55% efficiency, 60% CNGS sharing	
		[prot./6s cycle]	[pot/year]	[pot/year]	[pot/year]	
2.4×10 ¹³ - Nominal CNGS	2	4.8×10 ¹³	1.38×10 ²⁰	7.6×10 ¹⁹	4.56×1019	
3.5×10 ¹³ - Ultimate CNGS	2	7.0×10 ¹³	2.02×10 ²⁰	1.11×10 ²⁰	6.65×10 ¹⁹	
750kW design limit for t	he target	working hy RP calcula	pothesis for tions	M.Meddahi, E.Schaposnic	ova - CERN-AB-2007-013 PAF	

v beams at CERN – The Future

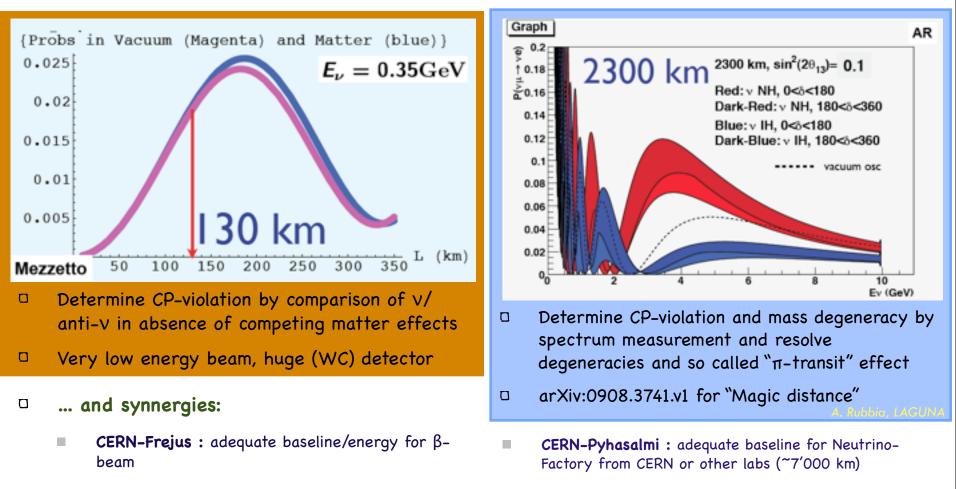
- predicting the future is an old story
 - but with questionable efficiency !
- Strong participation of European Labs in accelerator v physics programs worldwide
 - T2K neutrino beam
 - International Design Study for a Neutrino Factory (IDS-NF)
- CERN/Europe plays and can/should continue playing a leading role in the Neutrino Physics
 Courtesy: T. Hasegawa CERN Neutrino Strateg

Aegeus, King of Athens consulting the Delphic Oracle, Greek Vase, Altes Museum - Berlin, Ge

Accelerator v Physics in Europe (besides CNGS)

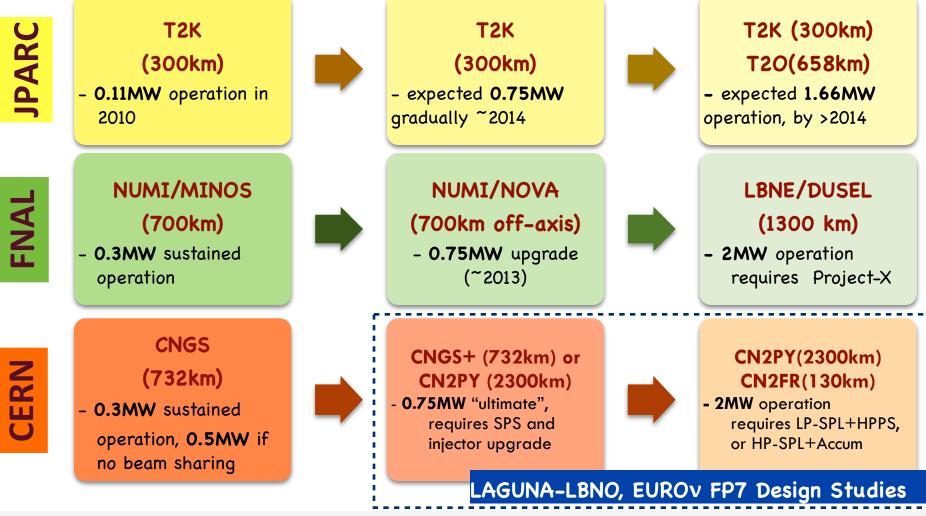
EC funded design studies

CERN


- EUROnu Design Study for Super-beam, β-beam, ν-factory
 WP3 = IDS-NF the GLOBAL effort
- EUCARD Neu2012 (network activity) MICE (transnational access)
- LAGUNA Water Cherenkov, LArgon, Scintillator Detectors
 LAGUNA-LBNO(new!) Underground detectors + beams from CERN
- R&D Activities prototypes
 - MERIT@CERN high-power targetry experiment

MICE@RAL – muon ionization cooling experiment

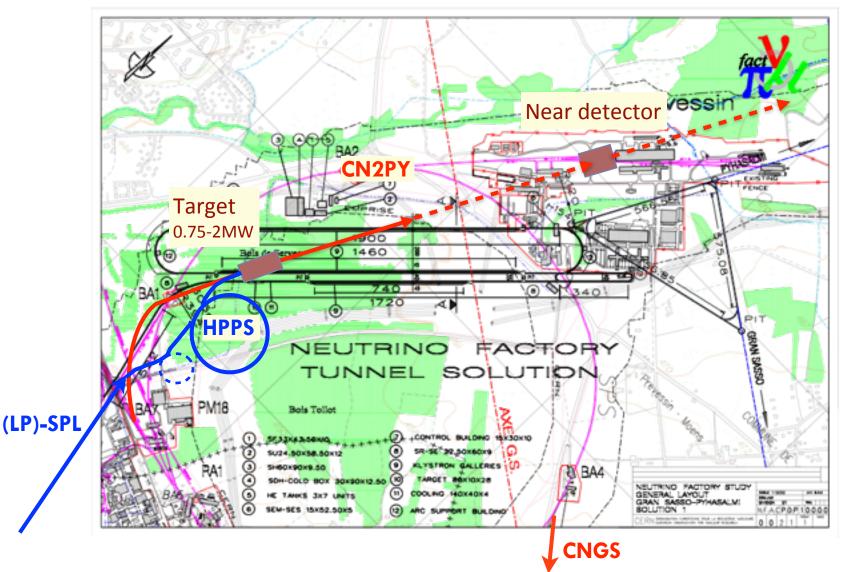
Long-Baseline v-beams from CERN


 CERN-Frejus (130km) & CERN-Pyhasalmi(2300km): Very short/very long baseline combination for unique physics opportunities in Europe

CERN

A staged approach towards high-intensity facilities

~1MW an important (necessary) barrier



Ilias Efthymiopoulos - EUCARD - Annual Meeting, Paris May 12, 2011

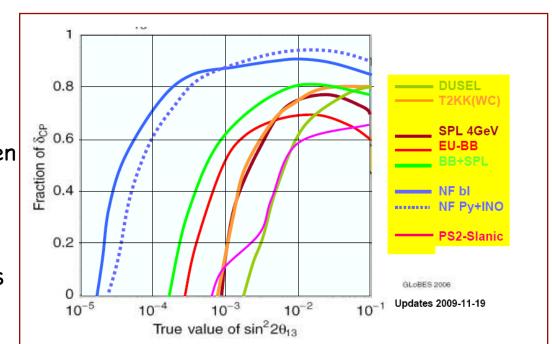
CERN

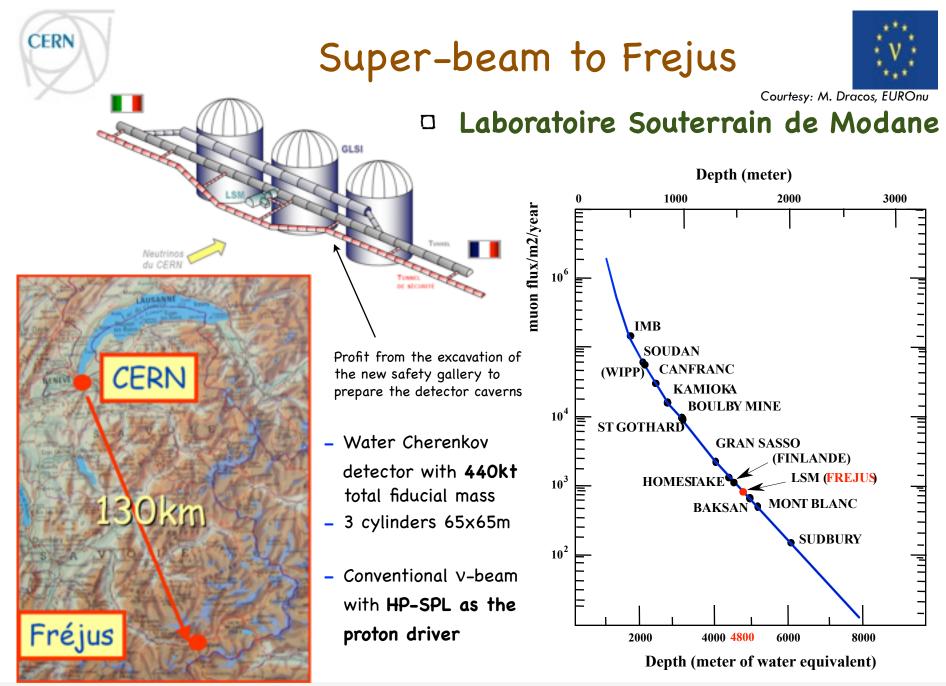
CERN v-beam to Pyhasalmi - CN2PY

CN2PY - Technical challenges

- CN2PY will profit from the CNGS experience but can't be just a "copy"
- Key issues to address:
 - Target station design: 0.75 2 MW
 - investigate the option for a future upgrade to MMW use as target station for a NeutrinoFactory
 - Optimized target/horn secondary beam optics for low energy neutrinos
 - SPS extraction system for high-intensity beams using the existing extraction channel (TI2) for LHC
 - Decay tube and near detector with 10-deg slope
- Enhance synergies and collaboration with teams working on neutrino beam lines in Japan and US

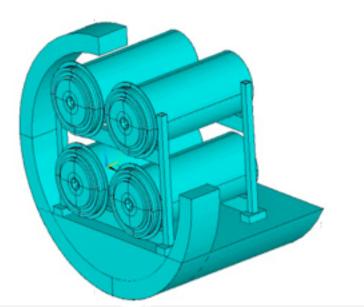
NBI workshop April 2012 @ CERN - NBI2012


The BIG picture – Ultimate Facilities


Precision measurements

- Mass hierarchy
- CP-violation
- lacksquare θ_{13} if only limits until then
- Understand and measure the v-mixing parameters
- Understand the differences between the quark and lepton sectors
- Physics beyond the SM?
- Possible options:

• **Option-II** : LBL from SPS (power-beam) followed by Neutrino Factory

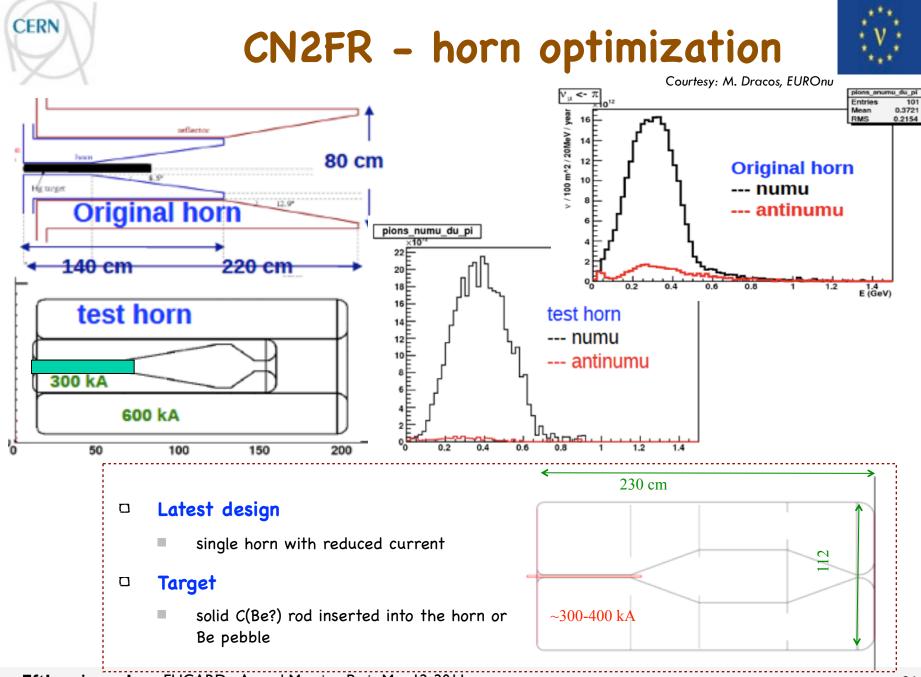

CERN v-sbeam to Frejus - CN2FR

 \sim -300 MeV ν_{μ} beam to far detector

CERN

Technical challenges:

Target design


• impact of the 4MW beam


Horn design

 high current, mechanical constraints due to physics requirements, radiation, high-current (heating), pulsing

Solution:

- 4 × 1 MW = 4 MW !!!!
- four target/horn assemblies mounted together in a mechanical structure

- Beta Beams: acceleration of beta active isotopes
- Unique facility for CERN:

EUR SOL Design Study

Talk from E.Wildner

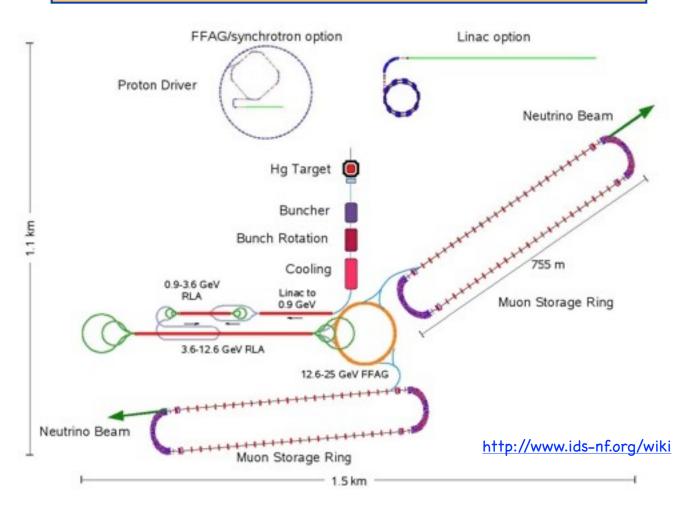
- Reuse of CERN existing accelerators and infrastructure \Rightarrow cost reduction
- Known technologies
- Ion Production: ISOL technique, ion production ring, molten salt loop
- **D** Synergies with Super beam to Frejus for enhanced physics reach

β -beam: isotope production

1X	X	Courtesy: E. Wildner, EUROnu						1 19 Alex			
	Туре	Accelerator	Beam	l _{beam} mA	E _{beam} MeV	P _{beam} kW	Target	Isotope	Flux	Ok?	
	ISOL & n-converter	SPL	р	0.1	2 10 ³	200	W/BeO	6He	5 10 ¹³]
	ISOL & n-converter	Saraf/GANIL	d	15	40	600	C/BeO	6He	5 10 ¹³		
	ISOL	Linac 4	р	6	160	700	19F Molten NaF loop	18Ne	1 10 ¹³]
	ISOL	Cyclo/Linac	р	10	70	700	19F Molten NaF loop	18Ne	2 10 ¹³		
	ISOL	LinacX1	3He	> 170	21	3600	MgO 80 cm disk	18Ne	2 10 ¹³		
	P-Ring	LinacX2	7Li	0.160	25	4	d	8Li	?1 10 ¹⁴		
	P-Ring	LinacX2	6Li	0.160	25	4	3He	8B	?1 1014		
Baseline option (⁶ He and ¹⁸ Ne). ¹⁸ Ne production experiments in 2011. ⁸ Li can be produced in sufficient quantities with ISOL & n-converter											
¹⁸ Ne: Molten Salt Loop ⁹ He & ⁸ Li: ISOL&n-converter ⁸ B & ⁸ Li: Production Ring C. Rubbia											
T. Stora					The and The	Bo	on neutrons Superso	onic gas jet targ	get, stripper and	absorber	
Irradiation cell Protons dump NaF loop Tansfer line to ion source to ion source Spallation target Spallation target OF											
Diffusion o	chamber Heat	exchanger		ISOL I	arget (BeO) in	concentric cy	linder	QD Dipol			

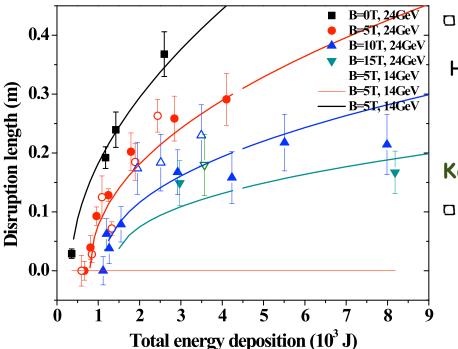
Ilias Efthymiopoulos - EUCARD - Annual Meeting, Paris May 12, 2011

CERN



Neutrino Factory

Courtesy: EUROnu & IDS-NF

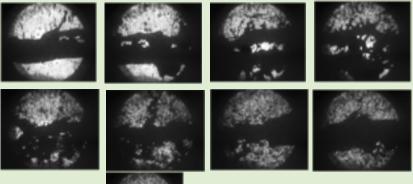

Ultimate facilities – Technical challenges

- Design and operate MMW facilities is not trivial
- Key issues where present R&D effort is concentrated:
 - Production :
 - Super-Beam: secondary beam elements : target
 - Neutrino Factory: Front-end system : target
 - β-beam : ion production
 - Beam handling :
 - **Super-Beam**: horns
 - Neutrino Factory: capture, cooling channel, RF & absorbers Beam dump, fast acceleration
 - β-beam : collective effects, ion losses & radiation
 - Beam delivery :
 - Super-Beam: decay tunnel dump
 - Neutrino Factory: storage ring slopes, beam monitoring
 - β-beam : decay ring
 - □ ... and v-beam monitoring & near detector

High-Power targetry

Key results #2

- Disruption threshold: >4×10¹²
 protons@14 GeV, 10T field
 - 115kJ pulse containment demonstrated
 - 8 MW capability demonstrated

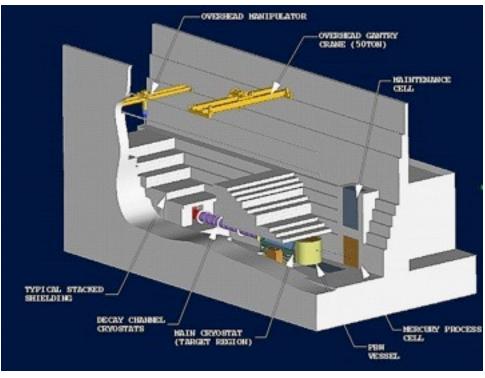

Ilias Efthymiopoulos - EUCARD - Annual Meeting, Paris May 12, 2011

The MERIT Experiment @ CERN PS

High-Power Liquid Hg-jet experiment, proofof-principle of a target system for a v-Factory or µ-collider

Key results #1

- Hg-jet disruption mitigated by magnetic field
 - 20 m/s jet operation allows up to 70Hz operation with beam
 - Hg-jet beam impact 16×10¹² p, 5T field, 14 GeV/c


Hg-jet is restored at the end

High-power target station

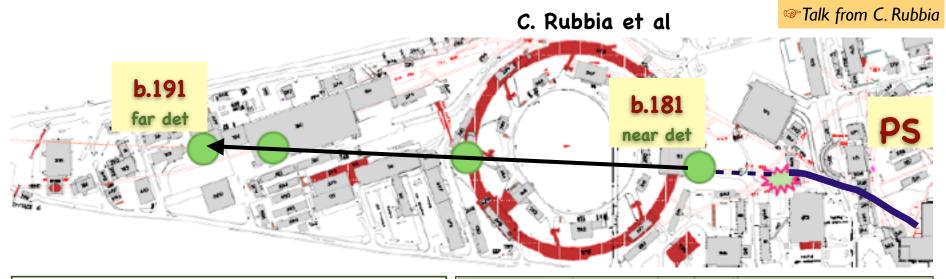
□ The future

Courtesy: P. Spampinato, ORNL

High-intensity (M)MW areas should be treated with respect !!!

Ilias Efthymiopoulos - EUCARD - Annual Meeting, Paris May 12, 2011

□ ... and the past



Dismantling WANF - 2010: Target & collimator

PS – Short Baseline v-beam

□ A search for anomalous neutrino $v_{\mu} \rightarrow v_{e}$ oscillations at the CERN PS with LAr-TPC detectors

 Beam line originally operated in early 80's for PS169, PS181, PS180(BEBC) experiments

CERN

- □ PS beam possibilities (180, 85% efficiency) :
 - 6.13 10¹⁹ ÷ 2.02 10²⁰ from zero to max impact to PS users

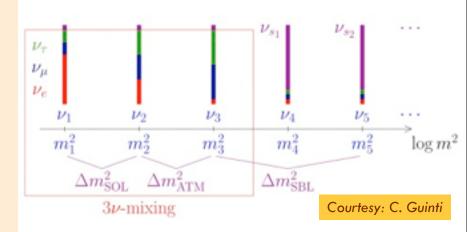
	Old neutrin	no facility	New neutrino facility			
	PS dedicated Feb-Mar 1983	P5 parallel 1983 - 1984	PS dedicated	P5 parasitic	PS ultimate ²	
Proton Momentum	19.2 GeV/c	19.2 GeV/c	20 GeV/c	20 GeV/c	26 GeV/c	
Protons/pulse	1.25x10 ³³	1.2×10 ¹³	3×10 ¹³	2.6x10 ¹³	4×10 ¹³	
Max. rep. rate	1.2 s	14.4 s	1.2 s	1.2 s	1.2	
Beam energy	38 kJ	38 kJ	96 kJ	84 kJ	166 kJ	
Average beam power	32 kW	2.5 kW	80 kW	70 W	140 kW	

Courtesy: R. Steerenberg – CERN

PS - SBL v-beam for sterile v's ?

Sterile neutrinos?

• Facts


- we know from LEP that there are 3 SM neutrino families: v_e , v_μ , v_τ
- we know from experiments the neutrinos have mass (small) because they seem to oscillate, i.e. over a distance they transform from $v_a \rightarrow v_b$

• The problem:

- some experiments (LSND, KAMLAND, MiniBooNe, MINOS,...) observed an anomaly in the oscillation pattern:
 - anti-neutrinos seem to oscillate differently than neutrinos, at least in some energy range
- to explain the effect CP and even CPT-violation is required, or new physics \rightarrow sterile neutrinos

The sterile neutrino hypothesis

- Imagine there are neutrinos into which the known ones can be transformed, but they don't transform back (or transform in a different rate), i.e. don't have SM interactions → sterile
- it turns out that a theory with 2 sterile neutrinos (3+2 theory) fits well (~)all of the present data
- Sterile neutrinos are not needed by the theory, but if found would be a great discovery !!!

From design studies to projects

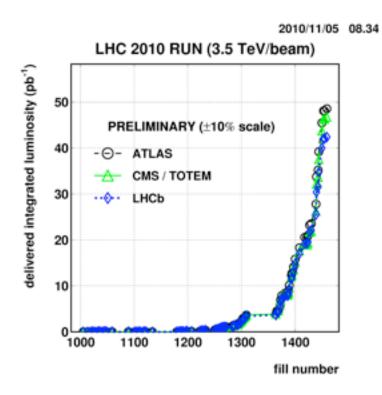
The political picture

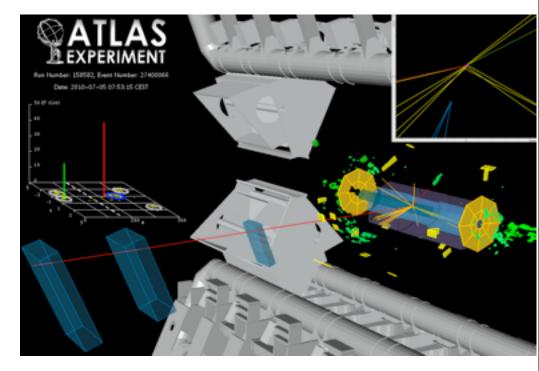
CERN

36 The European strategy for particle physics

The European strategy for particle physics

4. In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; *a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.*




6. Studies of the scientific case for future neutrino facilities and the R&D into associated technologies are required to be in a position to define the optimal neutrino programme based on the information available in around 2012; Council will play an active role in promoting a coordinated European participation in a global neutrino programme.

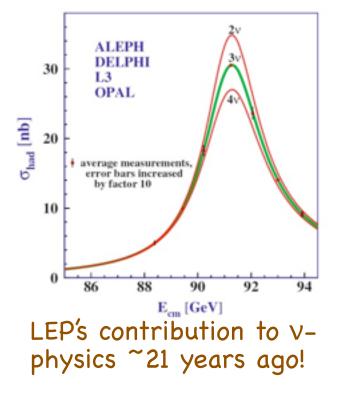
CERN - towards the energy frontier

- LHC is the new world's high-energy machine
- The first year of operation was just completed with excellent performance for protons and ions

Begun probing physics at the TeV scale!!

Ilias Efthymiopoulos - EUCARD - Annual Meeting, Paris May 12, 2011

v beams at CERN – what future ?


The opportunity ...

New results are expected soon to justify the physics case of a future v-program in // or as a post-LHC project

LHC : is physics beyond the SM?

- **CNGS**: # v_{τ} events to expectations?
- **T2K**: θ_{13} measurement/new limits
- Reactor experiments
 Θ₁₂, θ₁₃ measurement/new limits

... and of course any unexpected physics !!!

v beams at CERN - what future ?

... and the challenge

- Future v-facilities will require:
 - Innovative ideas and new accelerator technologies to be developed
 - Collaboration and coordination for accelerator and detector R&D at a global scale
 - The v-physics and accelerator community defines a prioritized roadmap of facilities to make v-physics a valid option for the field and CERN/Europe in // to LHC and its upgrades

v beams at CERN - what future ?

To know more about v-beams and associated physics:

NUFACT11 Workshop @ CERN/ UniGe in August 1-6, 2011

Neutrino Beam Instrumentation NBI2012 @ CERN in April 2012

EUCARD workshops within WP3-Neu2012 WP

Ilias Efthymiopoulos - EUCARD - Annual Meeting, Paris May 12, 2011

August 1-6, 2011 NuFact 11 Geneva, Switzerland

13th international workshop on neutrino factories, super beams and beta beams

a scientific program committee

working group conveners

Elocal organising committee

nufactii.unige.ch

