

MICE Step 1: First Emittance Results with Particle Physics Detectors

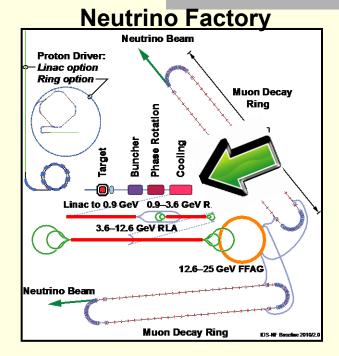
Linda R. Coney

EuCARD Meeting – 10 May 2011

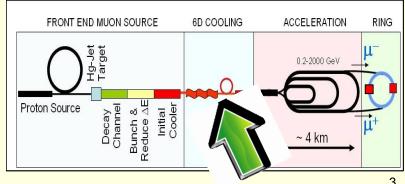
Outline

- Introduction
- MICE Description
- Step 1
- First Emittance Measurement
- Conclusions

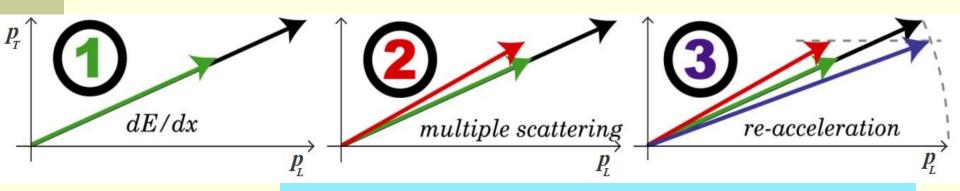
Neutrino Factory and Muon Collider R&D


Challenges:

- Intense proton driver
- Complex target
- Accelerate muon beams
 - From pion decay
 - Large phase space
 - → ie. High emittance
 - → Need to cool beam


What do we need?

- MICE
 - Proof of ionization cooling
- Target studies (MERIT)
- RF in magnetic field (MUCOOL)



Muon Collider

Muon Cooling

- Reduction in normalized emittance (without scraping) is needed for efficient μ beam acceleration & luminosity
- Conventional beam cooling techniques require relatively long time (muon lifetime 2 μs)
- A new solution is required...
- Ionization Cooling
 - Energy loss by ionization (dE/dX)
 - Forward re-acceleration by RF cavities

Cooling is achieved only for low Z material -> Liquid Hydrogen

Introduction MICE Step 1 Emittance Measurement Conclusions

MICE:

Muon Ionization Cooling Experiment

Tracker

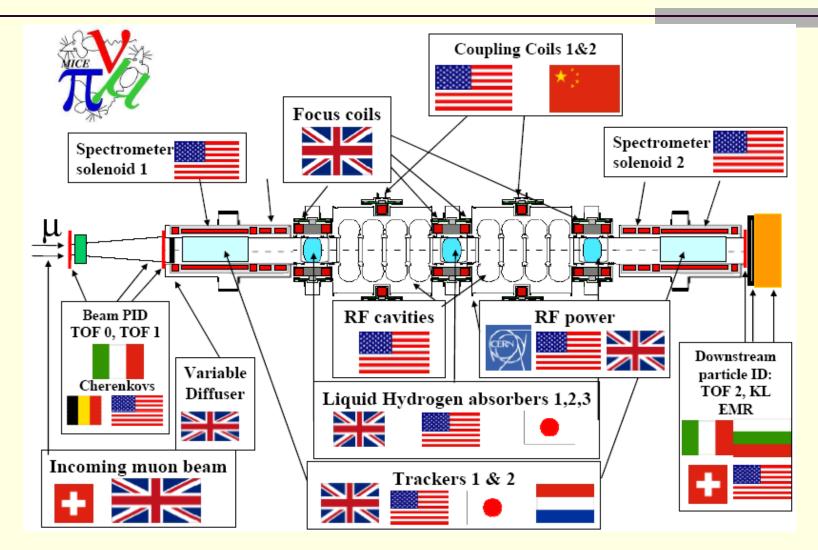
RFCC Module

LH₂ Absorber

MICE Goals:

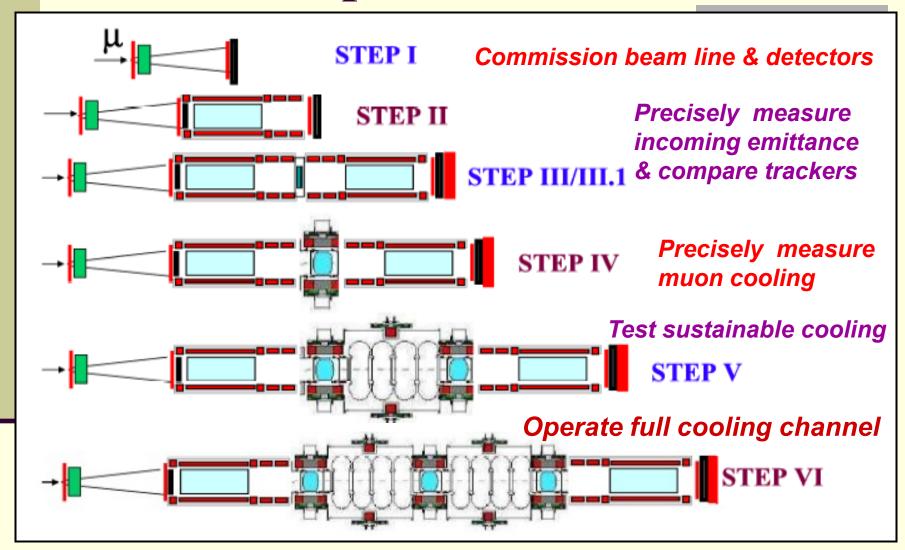
- Design, build, commission and operate a realistic section of cooling channel
- Measure its performance in a variety of modes of operation and beam conditions...

... results will be used to optimize Neutrino Factory and Muon Collider designs.

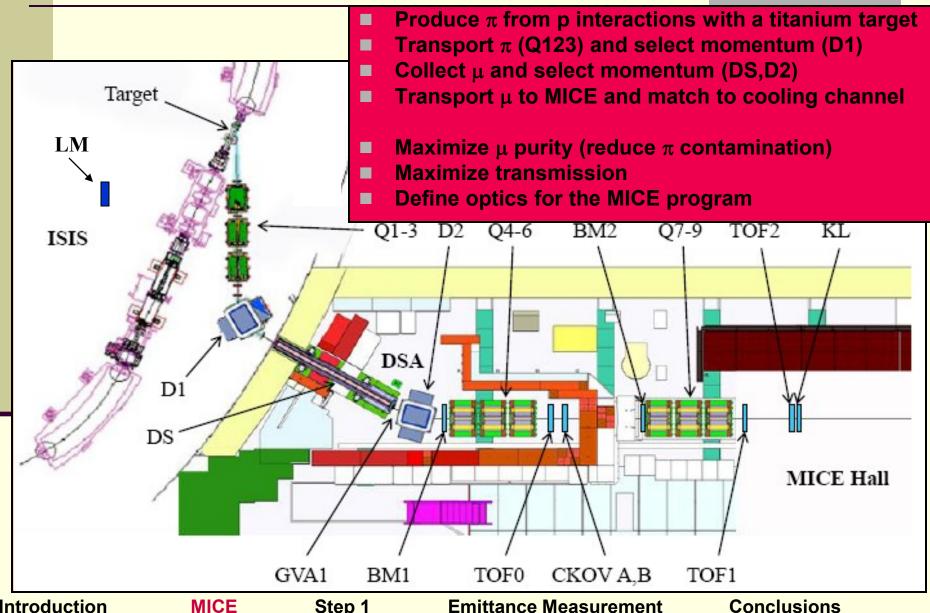

MICE: Design & Goals

- MICE is designed to produce a 10% cooling effect on the muon beam
- Use particle detectors to measure the cooling effect to ~1%
- Measurements done with muon beams with momentum 140– 240 MeV/c

Method:


- Create beam of muons
- Identify muons and reject background
- Measure single particle parameters x, p_x, y, p_y, p_z
- Cool muons in absorber
- Restore longitudinal momentum component with RF cavities
- Identify outgoing particles to reject electrons from muon decay

MICE: International Involvement

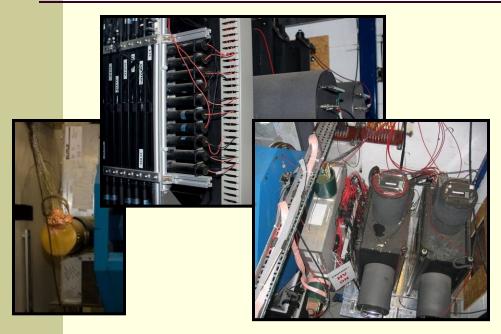

Institutions worldwide contributing to the demonstration of muon ionization cooling at MICE

MICE: Steps

Step 1 is now complete

MICE: Step 1 Beam Line

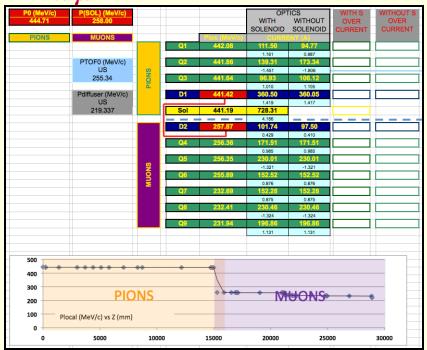
Emittance Measurement Introduction MICE Step 1

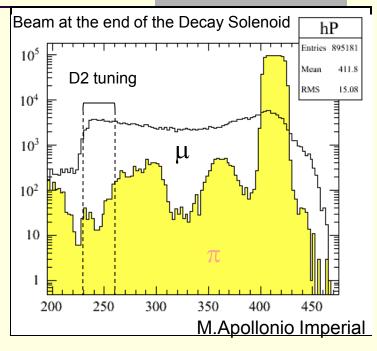

MICE: Beam Line

- Target, Q123, D1 inside ISIS synchrotron enclosure
- Decay Solenoid, Q456, TOF0, CKOVa/b
- Q789, TOF1, TOF2, KL in MICE Hall

MICE:

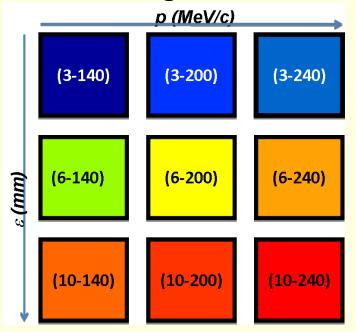
Particle Identification Detectors


- Downstream PID: reject decay electrons
 - Time of Flight TOF2 (Italy/Bulgaria)
 - Kloe-Light Calorimeter KL (Italy)
 - Electron-Muon Ranger EMR (UGeneva)


- Upstream PID: discriminate between p, π, μ
 - Beam Profile Monitors (FNAL)
 - Threshold Cerenkovs (UMiss/Belgium)
 - Time of Flight TOF0 & TOF1 (Italy/Bulgaria)

Step 1: Creating the Muon Beam

- Need good μ purity
- Use interplay between D1-D2
 - Tune D1 to fix π -peak
 - Tune D2 to select momentum fraction downstream beam line
- Select backward-going μ at D2
 - π/μ ratio for 238±24 MeV/c < 2%</p>



- Defining a beam line: magnet current rescaling by momentum
- Choose π or electron beam for calibration

Step 1: Defining Muon Beam Optics

- MICE will need μ beam with variable momentum (140-240 MeV/c) and emittance (3-10 mm)
- Matrix of 9 optics points is defined
 - Start at hydrogen absorber
 - Find α , β ,t at upstream face of diffuser \rightarrow energy loss
 - Determine momentum at upstream face of diffuser
 - Define 9 initial (M0) muon beam configurations

Baseline beam is (6-200)

Step 1: Data-Taking

Goals

- Calibrate beam line detectors
 - Luminosity Monitor, Beam Profile Monitors
 - TOF0, TOF1, TOF2, CKOVs, KL
- Understand the beam
 - Composition
 - Rates
 - Momentum scale
 - First phase-space reconstruction
 - Take data for each point in (ε-p) matrix
 - MICE beam designed to be tunable
 - Understand beam parameters for each configuration
 - Compare data to beam line model
- Prepare for Steps with cooling
- Successful 2 month data-taking summer 2010

Meant to be done using precise spectrometer

→ Necessary to improvise

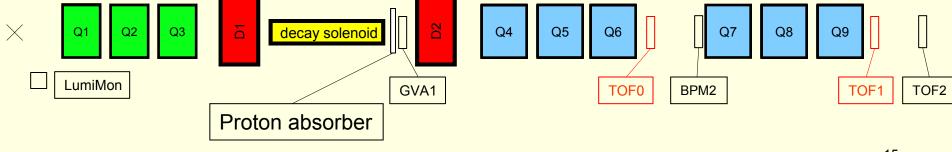
Step 1: Data

Machine Physics [15/6, 16/6] 2010

ISIS Users Run [19/6, 12/8] 2010

Machine Physics [13/8, 15/8] 2010

- Beam Rate vs
 Tgt depth studies
- max. beam loss: 4V

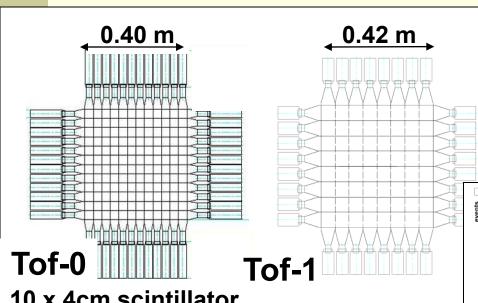


maximize μ production while operating in a parasitic mode

- Over 340000 target actuations / 11M triggers / 917 runs
 - upstream triplet scan
 - dipoles scan & decay solenoid scan
 - downstream triplets scan
 - downstream single quadrupole scan
 - beam composition studies
 - optics data-taking: (ε,p) matrix
 - DAQ tests
 - Controls systems tests
 - On Line Monitoring

- -Beam Rate vs Tgt depth studies
- max beam loss: 10V

Beam line configuration with detectors used for analysis



15

Introduction MICE Step 1 Emittance Measurement Conclusions

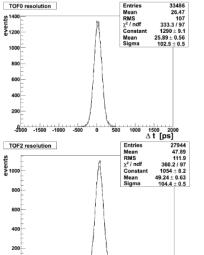
Step 1: TOF Commissioning

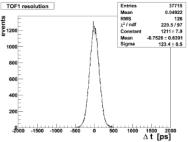
- Two planes of 1 inch thick orthogonal scintillator slabs in x and y
 - Timing information & beam profile data
 - 2D grid provides spatial information
- Used to Calculate Optical Parameters

10 x 4cm scintillator bars

$$\sigma_x = 1.15 \text{ cm}$$
 $\sigma_t = 50 \text{ ps}$

Introduction


7 x 6cm bars $\sigma_x = 1.73$ cm $\sigma_t = 50$ ps


[The design and commissioning of the MICE upstream time-of-flight system,

R. Bertoni et al., NIM-A 615 (2010) 14-26]

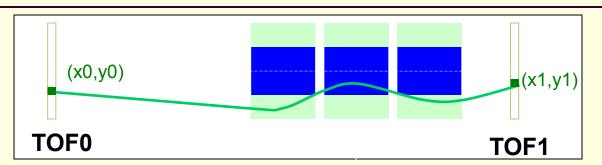
MICE

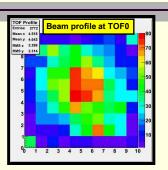
Step 1

Beam profile at TOF0

- Time resolution after calibration:
- TOF0 51ps
- TOF1 62ps
- TOF2 52ps
- Resolution meets design goals for TOFs

Emittance Measurement

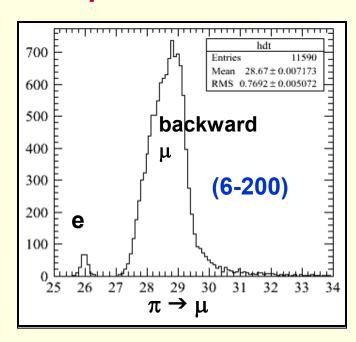

Y.Karadzhov USofia


Conclusions

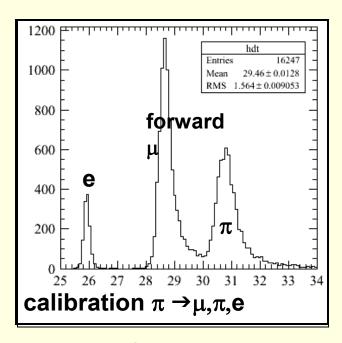
Step 1: Analyses

- Particle Rate vs. Losses in ISIS
 - Maximize μ rate want hundreds/spill
- Beam Composition
- First emittance measurement in MICE
- Target operation studies
 - Depth, delay, acceleration
- Proton absorber
 - Eliminate protons in μ* beam
- Data quality
 - daily reference runs to verify stability

How MICE Measures & in Step 1



Use TOF0 and TOF1 particle detectors to determine phase space parameters of the muon beam


- For each particle: know time-of-flight and position (x,y) at each detector
- Momentum-dependent transfer matrices map particle motion from TOF0 to TOF1 through drifts and quad triplet
 - G4MICE used to simulate beam, determine energy loss along path, and estimate detector effects
- Estimate initial path length and momentum
- Using transfer map:
 - Iterate and improve calculation of path length and momentum
- Calculate initial and final momentum at TOF0 and TOF1
- Determine phase space of beam at TOF planes, x,y, p_x, p_y

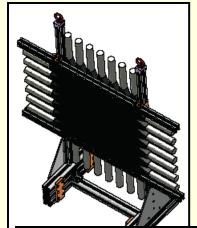
ε Measurement: Particle Timing

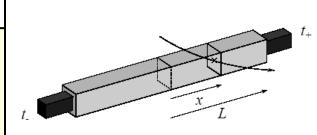
- Timing information used for both particle ID and position measurement (x,y) at TOF0 and TOF1
 - Selection of good muon
 - Identified using time-of-flight measurement with 71 ps resolution

Pion beam for detector calibration (also contains e and μ) 19

Introduction

MICE

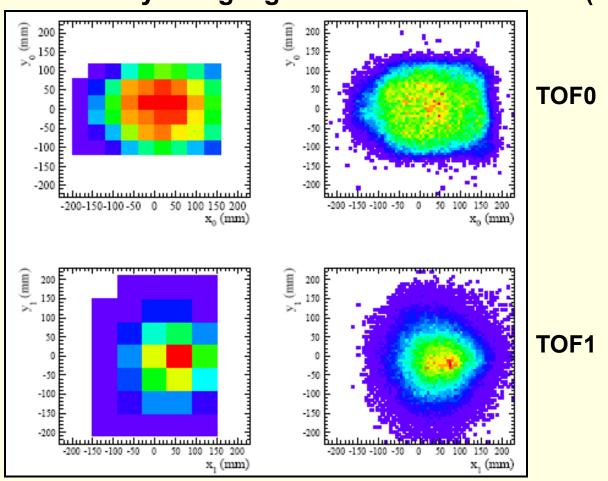

Step 1


Emittance Measurement

Conclusions

ε Measurement: TOF Position

- Transverse Position
 Determination with TOF detectors
 - Start with size of slab crossing (4x4cm, 6x6cm)
 - Use difference in arrival time of signals at PMTs in each slab to improve position measurement
 - Calibration corrected for time walk and cable lengths
 - Effective propagation speed of light in the scintillator slab is measured by comparing (t_+-t_-) with position information given by orthogonal slab.
 - c_{eff} = 14 cm/ns; $\sigma_x \sim 1.0$ cm



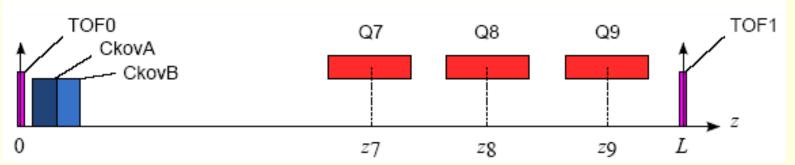
$$x = \frac{-c_{\text{eff}}(t_{+} - t_{-})}{2}$$
$$\sigma_{x} = \frac{c_{\text{eff}}\sigma_{\text{PMT}}}{\sqrt{2}}$$

Beam Profile in TOF Detectors

- Beam profiles in TOF0 and TOF1
 - Position using only slab width (left) and position determined by using signal arrival time in PMTs (right)

21

Introduction


MICE

Step 1

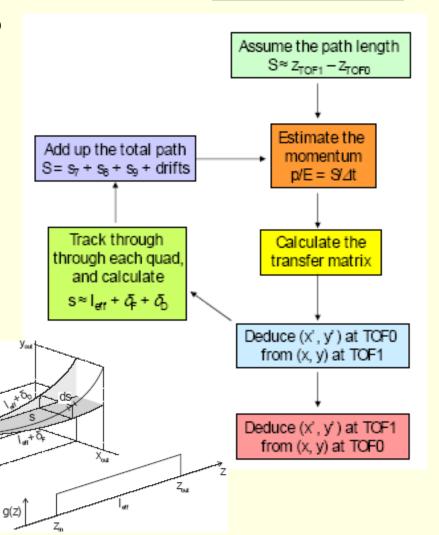
Emittance Measurement

Conclusions

Particle Path & Momentum

- Good muon selected & particle positions measured
- Use product of transfer matrices $M(p_z)$ through the drifts and quadrupole magnets to map trace space from TOF0 to TOF1 (with det $M \equiv 1$).

$$\begin{pmatrix} x_1 \\ x_1' \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x_0' \end{pmatrix}$$


The angles are deduced from the positions

$$\begin{pmatrix} x_0' \\ x_1' \end{pmatrix} = \frac{1}{M_{12}} \begin{pmatrix} -M_{11} & 1 \\ -1 & M_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

Path & Momentum Reconstruction

- Initial path length assumed to be straight line
- Iterate to remove bias in path length
 - Momentum calculated given path length and time-of-flight from TOFs
- Particles tracked using thick edge quadrupole model
- Compared to MC using G4MICE to simulate beam

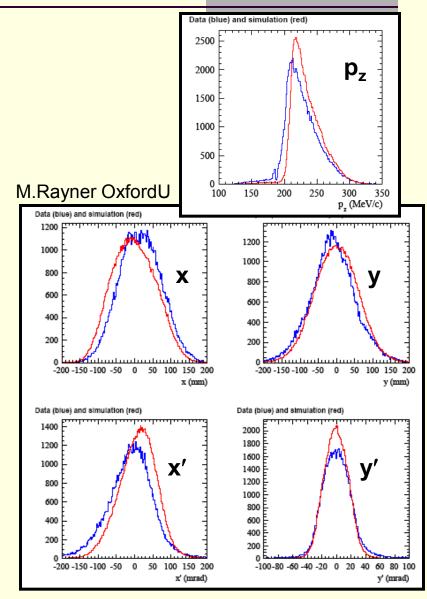
Calculate x', y' and emittance

Reconstruction of x' = dx/dz and p_z

- G4MICE simulates muons through beam line
- Input beam created with G4BeamLine simulation from target to upstream face of TOF0
- Optics tuned to baseline 6-200 beam
 - 6 mm transverse emittance in first tracker plane
 - Mean $p_z = 200 \text{ MeV/c}$ in first absorber
- Energy loss in TOFs, CKOVS, air
- Detector effects varied

Introduction

MICE


Step 1

Emittance Measurement

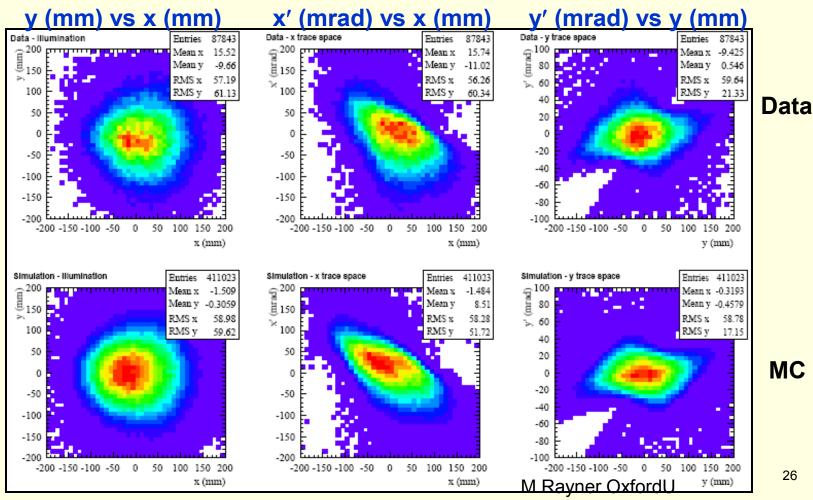
Conclusions

εMeasurement: Compare Data and MC

- Emittance measurement:
 - Good muon selected ✓
 - Muon positions measured ✓
 - Momentum reconstructed
 - \mathbf{x}'_0 and \mathbf{x}'_1 determined
 - Calculate emittance
- G4MICE used to simulate TOF0→ TOF1 beam line
- For baseline (6-200) μ⁻ beam
- Promising agreement observed between data (blue) and Monte Carlo (red) at TOF1 for momentum and x,y,x',y'

Introduction

MICE


Step 1

Emittance Measurement

Conclusions

ε Measurement Result: Data vs MC

Reconstructed transverse phase space of the baseline MICE beam (6-200) at TOF1

Introduction MICE Step 1 Emittance Measurement Conclusions

MICE: Conclusions

■ MICE data-taking for Step 1 is complete

Innovative method used to make first measurements of beam emittance using time-of-flight detectors

■ MICE muon beam is understood and ready for the arrival of the cooling channel

MICE: Muon Rate

- Reconstructed muon tracks/(Vms)/(3.2 ms spill)
- Muon track rates for both MICE beam polarities
 - **Emittance referred to 1rst spectrometer
 - †Momentum referred to MICE central absorber
- Counts are normalized to the V ms units used to characterize the target depth
- Errors primarily due to time-of-flight cuts used to define a muon

M0		μ rate *			μ ⁺ rate		
		P_z (MeV/c)			$P_z \text{ (MeV/c)}$		
		140	200	240	140	200	240
ε _ν *(hm·rad)	3	4.1	6.3	4.9	16.8	33.1	33.0
		± 0.2	±0.2	±0.2	±1.8	±3.2	±2.6
	6	4.1	4.8	4.5	17.8	31.0	31.7
		± 0.4	±0.2	±0.2	±1.8	±2.0	±2.0
	10	4.6	5.4	4.4	21.6	34.0	26.1
		± 0.2	±0.2	±0.1	±2.2	±2.5	±1.5

A.Dobbs Imperial College