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I History of Neutrino Discoveries

= Atmospheric v, are converted to v, (SK) (98)
= Solar v, are converted to either v, or v (SNO) (02)

= Only the LMA solution left for solar neutrinos
(Homestake+Gallium+SK+SNOQO) (02)

= Reactor anti-v_ disappear/reappear (KamLAND) (04)
= Accelerator v, disappear (K2K 04 , MINOS 06)

s OPERA sees first tau appearance event (10)

= Message: many discoveries in neutrino physics
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r Impact of Neutrino Discoveries

= Lepton Flavor is not conserved

= Neutrinos have tiny masses, not very hierarchical

= Neutrinos mix a lot

= At least 7 new parameters for SM

= Quite unlike quark mass and mixing

= Of all fermions, neutrinos are least understood

= First new physics beyond the SM

» Message: most important discovery of last 20 years
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E Why Beyond Standard Model?

~N

1. There are no right-handed neutrinos V s 2
2. There are only Higgs doublets of SU(2), = g

3. There are only renormalizable terms J

In the Standard Model these conditions all apply so neutrinos
are massless, with v, , v, v, distinguished by separate lepton
numbers L, L, L,

Neutrinos and anti-neutrinos are distinguished by the total
conserved lepton number L=L +L +L,

To generate neutrino mass we must relax 1 and/or 2 and/or 3

Message: Neutrino Mass and Mixing is first physics BSM
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Implications for PP and Cosmology

Origin of tiny neutrino mass
Extra dimensions, See-saw mechanism, SUSY

Unification of matter, forces and flavour
GUTs, Family Symmetry,...

Did neutrinos play a role in our existence?
Leptogenesis

Did neutrinos play a role in forming galaxies?
Hot/\Warm Dark matter component

Did neutrinos play a role in birth of the universe?
Sneutrino inflation

Can neutrinos shed light on dark energy? A ~m# )
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Message: many interesting implications for PP and Cosmology
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B Three Neutrino Mass and Mixing

v, v v,
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Oscillation phase S 3 masses + 3 angles + 1(3) phase(s)
Majorana phases ,, = 7(9) new parameters for SM
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Global F|t to Atmospherlc and Solar Data
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B Three Neutrino Mass and Mixing

at a glance
s =, % ¢
-V, e13_ Vu
Normal | ™= V. Inverted Vi / 0

atmospheric
~2x103eV?

atmospheric

~2x1073eV2

Absolute neutrino mass scale?

Message: the neutrino mass ordering and mass scale are not
yet measured, nor is the reactor mixing angle or CP phase
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E Tri-bimaximal Mixing

(2 L0
\{6 \{§ 1 Harrison, Perkins, Scott
RS\ T G
\ % v 3/
Including __ ATB __ oro TB _ Apo TB
deviations from b3 = A13 , b =35"+ A1y, Oy =45+ A23 '
TB mixing

c.f data 015 = 561‘%2 010 =34.4+1.0 693 = 42.816:5

Message: neutrino mixing is consistent with the remarkably
simple TB mixing pattern, hinting at an underlying symmetry
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B Tri-bimaximal Parametrisation

SFK arXiv:0710.0530
r 1 1

S13 7 312:ﬁ(1+3), stzﬁ(lﬂLa)

0.07 <r <021, —0.06 <s<0.003, —0.09 <a<0.04

r = reactor a = atmospheric
Jia-1s) L(1+5) L et
U =~ —%(1+5—a+r¢25) 7(1 %s—a——rez‘s) \%(l—l—a)
Z(l+sta—re?) —=(l—-gs+a+gre?) —(1-a)

Present data is consistent with r,s,a=0 —>tri-bimaximal
SO need to measure r,s,a,0



Oscillation formulae in terms of r,s,a

Pozﬁ — P(Voz — Vﬁ) Az’j = 127Am?]L/E
— T

3 )
reactor 1 992 o2 Y A2 Only sensitive to the
{Pee =1 —2r"sin” A 9 A21 reactor parameter r

4 4
Pe r% sin® Agy + §A§1 + §TA21 sin Agy cos(Aszy + 0)

2
P, = 1—-(1- 4a?) sin® Agy — 5(1 + 3 cos 2A31)A§1
2

- 5(1 — s — 1 cosd)Ay; sin 2Ag,. Sensitivetors.a
‘K/

For a list of formulae including matter effects see SFK arXiv:0710.0530
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E Reactor Angle: Theory vs Experiment

T
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Reactor angle in Abelian

, VS Experimental Prospects
Family Symmetry Models
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‘ Future LBL Options:
= Second generation —
super-beam: CERN,
LBNE (WBB), T2HK
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Prospects to measure 0,54
1 , "

Physics at a future Neutrino Factory and super-beam

facility. By ISS Physics Working Group
Rept.Prog.Phys.72:106201,2009
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Prospects to measure the pattern of v masses

Physics at a future Neutrino Factory and super-beam

Sensitivity to the Sign of A my;° Ropt Prog Phys 721062012000

arXiv:0710.4947 [hep-ph]
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Prospects to measure CP Violation

Physics at a future Neutrino Factory and super-beam
facility. By ISS Physics Working Group
Rept.Prog.Phys.72:106201,2009

arXiv:0710.4947 [hep-ph]
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E Tri-bimaximal MixingxGUTs

Message: Tri-bimaximal mixing
suggests a discrete family symmetry

7 / symmetry

which may be combined with GUTs <t
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GEamily

5/10/11

Agel SO

e.g. A, is the symmetry
of the tetrahedron
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GouT

SU(S)an)/Sz)h

AN

SU(4) . x SU(2), x SU(2),, SUG)
|

SUQ3).xSU2), xSU2),xU1),_,
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E TB MixingxGUT Predictions
: | Y Clazs :f models: 6 > 6 "
Yu V d 0, ® 6,

CKM
See-saw = _
mv = VEWZ yv MR-l va GUT PCIGTIOH
6 =~ 6—182 ~ Q_C ~ 30
M «—Y """ 750
V - .
VMNS €- sin” 260,, =10

le ~ 353 + (913 cosd| SumRule

SFK, Antusch, Masina

Message: TB mixing can never be exact in GUT models




B Prospects to measure sum rule
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E Summary

*\We have witnessed a revolution in neutrino physics

*Yet still do not understand origin of neutrino mass and mixing
*Current data consistent with tri-bimaximal mixing

*Realistic models predict deviations from tri-bimaximal mixing

Benchmark Model 013 093 — 45°] | |f12 — 35° 0

TBM ® GUT [9] 3% —3| <1° <1°  190° 270°
QLC [10] Oc = 13° <1° large 180°
Abelian [4] Fig.7 large large any

*In order to discriminate between these models to test GUTs
of Flavour against Abelian Models or QLC...

*Need to measure the deviations of the reactor, atmospheric
and solar angles from their TB values, and also measure 0
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