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Motivation

● Efficient & precise tracking of relativistic particles 
always requires several measurement points
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Motivation

● Efficient & precise tracking of relativistic particles 
always requires several measurement points
• TPC: one data point per pad
• Silicon tracker: one data point per layer

● Tracking detector systems:
• Momentum determination
• Vertex reconstruction

● Pile-up mitigation, background suppression
● Secondary vertices → B-tagging

● Supports identification of particle types
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Momentum Reconstruction
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Momentum Reconstruction
● Relativistic particles in magnetic field:

•            circular track

•            straight track

• Else   helical track

● Lorentz force and centripetal force in equilibrium:

● Measurement of the radius of curved tracks 
yields transverse momentum pT

Simple approximation

with



29/06/2022S. Spannagel - HighRR Lecture Week - Modern Tracking Detectors8

Momentum Measurement

θ

R

L

s● Radius can be determined by measurement of 
sagitta length s at track length L

● Uncertainty of momentum proportional to 
uncertainty of sagitta measurement:

● Uncertainties of sagitta measurement:
• Spatial detector resolution
• Multiple Coulomb scattering
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Momentum Measurement – Uncertainty
Contribution from detector resolution

✔ Spatial detector resolution σm

✔ Track length L

✔ Magnetic field B

✔ Number of measurements N

✗ Transverse momentum pT

➔ Large tracking detector inside a strong magnetic field essential!

Gluckstern formula  (for N > 10)
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Contribution from multiple Coulomb Scattering

● Scattering: 

✔ Track length L

✔ Magnetic field B

✔ Number of measurements N

✗ Material budget ε=l/X0

Momentum Uncertainty (Scattering)

Momentum Measurement – Uncertainty
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Contribution from multiple Coulomb Scattering

● Scattering: 

✔ Track length L

✔ Magnetic field B

✔ Number of measurements N

✗ Material budget ε=l/X0

➔ Constant as a function of pT

Momentum Uncertainty (Scattering)

Momentum Measurement – Uncertainty



29/06/2022S. Spannagel - HighRR Lecture Week - Modern Tracking Detectors12

Momentum Measurement – Uncertainty

Total Uncertainty

● Resolution: linear dependency on pT
● Scattering: constant as a function of pT

Comparison

● Calorimeters: 

● Tracking:
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Vertex Reconstruction
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Secondary Vertices – b-Tagging

● Not all particles decay immediately – example: b-quarks:

• Produced at collision (primary vertex, PV)

• Propagation during finite lifetime

• Decay → secondary vertex (SV)
● Lifetime of b-quarks: 𝒪(10-12 s)

• Flight distance: 𝒪(100 μm)
• Can be resolved with modern

tracking detectors

• Indication of SV hints at b-quarks, used for e.g. b-Tagging

IP Interaction Point
PV Primary Vertex
SV Secondary Vertex
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Secondary Vertices – b-Tagging
● Observable for tracking detectors:

Impact parameter d0 of individual tracks w.r.t. main jet

● Resolution: σd0 = σd0(meas) ⊕ σd0(scat)

IP Interaction Point
PV Primary Vertex
SV Secondary Vertex

d0

Example: ATLAS Pixel Detector

2008: 3 Layers, 10 μm resolution,
          Radii: 5.05 cm, 8.85 cm, 12.25 cm.

→ σd0 = 18.1 μm ⊕ 142 μm/p (GeV/c)
2014: Additional “B-Layer” / IBL @ 3.3 cm

→ σd0 = 12.1 μm ⊕ 93 μm/p (GeV/c)
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Timing – Background & Pile-Up
● Collisions become increasingly complex

• Hadron colliders: Pile-Up
Multiple hard scattering collisions per bunch crossing

• Lepton colliders: background
Often operate in bunch trains, need to separate out hard scattering

● Use time structure of collisions!

● Different approaches

• Include timing in tracking detect.

• Dedicated timing detectors
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Example – CLIC @ 3 TeV: Experimental Conditions
● CLIC operates in bunch trains,

repetition rate of 50 Hz

• 312 bunches within train

• Bunch separation by 0.5 ns

● Bunch separation & cross-section of background events
drive timing requirements for detector

• 1 ns time resolution for calorimeters

• 5 ns single-hit resolution for vertex/tracking detectors
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Example – CLIC @ 3 TeV: Background suppression
● Fully-hadronic tt event
● Background suppression by

• Defining reconstruction window
10 ns before, 30 ns after event

• Building physics objects

• Suppression via
● Timing requirements

● Particle type and pT

● Retaining high-pT objects 

full event
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Example – CLIC @ 3 TeV: Background suppression
● Fully-hadronic tt event
● Background suppression by

• Defining reconstruction window
10 ns before, 30 ns after event

• Building physics objects

• Suppression via
● Timing requirements

● Particle type and pT

● Retaining high-pT objects 

background suppressed
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Very Short Recap
Gaseous Detectors vs. Semiconductor Detectors
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Gaseous Detectors
Working principle

● Ions & electrons generated via ionization, ~ 30 eV ion. energy

• Electrons and ions drift in an electric field,
current is induced by the drift of charge carriers

• Gas amplification for increase of signal

Types (selection)

• Multi-wire proportional chamber

• Micro pattern gas detectors (MicroMegas, GEM)

• Drift Chamber, Time Projection Chamber

Relatively high ionization energy
Limited rate capabilities
Mechanical fragility (for some types)

Very lightweight
Few issues with rad. damage
Large volume instrumentation
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Semiconductor Detectors
● Oversimplified: ”Semiconductor ionization chamber”

• Electron-hole pairs created from
ionization energy, ~ few eV

• Electrons/holes propagate in an electric field

• Current is induced by drift of the charge carriers

! Technically very different from gaseous detectors!
→ Using established IC industry processes for production

Expensive for large area instrumentation
Solid material placed in particle path
Often complex module / detector setup

Low signal generation energy
Nano-scale structures via lithography
Capable of running in high fluxes
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Short Recap
Semiconductors, Bandgap, Doping
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The Energy Band Model

● Atom: discreet energy levels, orbitals

● Crystal lattice: levels smear out

● Formation of energy bands 

• Valence band – (last) fully filled

• Band gap

• Conduction band

                          

H. Spieler
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Metals, Insulators, Semiconductors bandgap silicon:
EG ≈ 1.12 eV (300K)
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Detecting a Particle with Intrinsic Silicon
● Silicon sensor: A = 1 cm2 and d = 300 μm

● Signal of MIP:

• Mean ionization:  E0 = 3.6 eV (silicon)

• Mean energy loss: dE/dx = 3.9 MeV/cm

 

 

 dE/dx of protons in silicon 

  PDG 

dE
dx

⋅ d
E0

= 3.9⋅106eV /cm⋅0.03 cm/3.6 eV

≈ 3⋅104e /h pairs
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Detecting a Particle with Intrinsic Silicon
● Silicon sensor: A = 1 cm2 and d = 300 μm

● Signal of MIP:

• Mean ionization:  E0 = 3.6 eV (silicon)

• Mean energy loss: dE/dx = 3.9 MeV/cm

●  Thermally excited charge carriers in silicon: ni = 1.45 x 1010 cm-3 (at 300K)

 

 dE/dx of protons in silicon 

  PDG 

ni⋅d⋅A = 1.45⋅1010cm−3⋅0.03cm⋅1cm2

≈ 4⋅108e /h pairs density silicon:
N ≈ 1022 atoms/cm3

dE
dx

⋅ d
E0

= 3.9⋅106eV /cm⋅0.03 cm/3.6 eV

≈ 3⋅104e /h pairs
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Doping Silicon – n-type
● Adding group-V element (phosphorus)

● Four covalent bonds, one “dangling” e

● Introduces “donor” state

● Negative majority
charge carrier: “n”

typical doping (p-in-n sensor):
ND ≈ 1012 cm-3
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Doping Silicon – p-type
● Adding group-III element (boron, aluminum)

● Vacancy in covalent bonds – “hole”

● Introduces “acceptor” state

● Positive majority
charge carrier: “p”

typical doping (p-in-n sensor):
NA ≈ 1015 cm-3
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Forming a pn-Junction

● Electrons and holes diffuse over junction

● Donor/acceptor atoms remain

• Depleted / space charge region (SCR)

• Potential Ubi builds up

● Thermal equilibrium:
Built-in potential balances diffusion

● Constant Fermi level:
Deformation of energy bands

H. Spieler
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Built-in Voltage Ubi

● Potential across the junction:
difference of Fermi energies

● Thickness of built-in SCR:

U bi = EFn−EFp

= kBT ln (
N A ND

ni
2 )

d (U bi) = √ 2ϵr ϵ0
|N D−N A|

⋅U bi

p-in-n sensor:  Ubi ≈ 0.4 V

p-in-n sensor:  d ≈ 20 μm

silicon p-in-n sensor:

NA ≈ 1015 cm-3 
ND ≈ 1012 cm-3

kBT ≈ 0.026 V
ni = 1.45 x 1010 cm-3
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pn-Junction in Forward Bias
● Lowering potential difference

● Increases flow of electrons & holes

H. Spieler

+  –
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pn-Junction in Forward Bias
● Lowering potential difference

● Increases flow of electrons & holes

● Shockley eq.

H. Spieler

I=I 0(e
eU /kB T−1)

H. Spieler

+  –
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pn-Junction in Reverse Bias
● Raising potential difference

● Widens depletion region

H. Spieler

–  +

`
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pn-Junction in Reverse Bias
● Raising potential difference

● Widens depletion region

● Shockley eq.

H. Spieler

I=I 0(e
eU /kB T−1)

H. Spieler

–  +

`
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pn-Junction in a Sensor
● Asymmetric pn-junctions, here: p-in-n

● Lightly doped n bulk sensor material

● Thin, highly-doped p implant

● Depletion voltage:

● Segmentation of implant:
separate channels

● Backside: layer of highly doped n+

as ohmic contact
H. Spieler

typical doping (p-in-n sensor):
NA ≈ 1015 cm-3

ND ≈ 1012 cm-3
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Particle Detection
With Semiconductor Detectors
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Particle Detection with Semiconductor Detectors

Signal
Transfer

DigitizationCharge
Transport

Energy
Deposition

incident
radiation
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Energy Deposition – Energy Loss
● (heavy) charged particles:

Mean energy loss described by Bethe formula

(sparing you the formula… )

● Definition of MIP:
Minimum Ionizing Particle

Phys. Rev. D 98, 030001
doi:10.1103/PhysRevD.98.030001

https://doi.org/10.1103/PhysRevD.98.030001
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Energy Deposition – Fluctuations
● Strong fluctuations of energy loss: Landau-Vavilov distribution / Bichsel model

• Varying number interactions, energy transfer

• Secondary particles (e.g. delta rays)

• Most probable value (MPV) < Mean

● Photons: Photo effect, Compton effect,
pair production

● Creation of e/h pairs: 3.64 eV / pair
Fluctuations: Fano Factor σe /h=√N e /h √F

Phys. Rev. D 98, 030001
doi:10.1103/PhysRevD.98.030001

MPV Mean

https://doi.org/10.1103/PhysRevD.98.030001
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Signal Formation
● Sensor operated as diode in reverse bias → depleted volume

● Signal formed by motion of e/h pairs in electric field

● Contribution to motion:

• Diffusion – Temperature-driven random motion, mean free path ~ 0.1 µm, mean 0

• Drift – Directed motion, depending on electric field and charge carrier mobility,
different parametrizations for mobility available, depending on temperature, silicon, …

● Motion stops when...
• Charge carriers reach readout electrode (conductor)

• Charge carriers recombine/get trapped (depends on purity, doping, lattice defects, …)
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Signal Transfer
Coupling between sensor & front-end can be

● DC: bump bonds (hybrid pixel), direct (monolithic pixel), … 

● AC: glue layers (hybrid pixel), SiO2 (strip detectors), … 
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Digitization
● Signal is amplified, shaped, zero-suppression (discriminator)

● Digitization of the signal via

• Full ADC

• Time-over -threshold

• Threshold crossing (binary hit information)

● Buffering, encoding, data transmission...
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Requirements
for Current & Future Tracking Detectors

200 m² Silicon Strip Tracker
CMS Tracking Detector Barrel
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Silicon Tracking Detectors in Particle Physics
● Silicon tracking detectors have long history in particle physics

● Instrumental in discovery of Higgs boson at LHC

● Larges detectors installed in ATLAS & CMS 

• Tracking detectors: strips, 200 m2 silicon, 70M channels

• Vertex detectors:  pixels, 1 m2 silicon, 140M channels

● Detector upgrades for HL-LHC in preparation

• More resilient against radiation-induced damage

• Additional capabilities (e.g. triggering)

1983: NA11 / CERN

2007: CMS Tracker / CERN

2000: ZEUS MVD / DESY

2017: CMS Phase 1 Pixel / CERN
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The Future of Particle Physics
● European Strategy Update: possible directions for particle physics

• Importance of fundamental detector R&D specifically highlighted

● Higgs boson plays unique role in extending knowledge

• Address questions within SM, provide sensitivity to new physics

• Yukawa couplings, self-couplings, branching ratios

• Precision measurements required

● Highest priority: future lepton collider

• Different initial states

• New opportunities
& challenges

CERN EP Newsletter



29/06/2022S. Spannagel - HighRR Lecture Week - Modern Tracking Detectors46

Silicon Detector Requirements at a Lepton Collider
● Precision measurements especially demanding on vertex & tracking detectors

• Momentum resolution  – large lever arm, minimum scattering

• Impact parameter resolution – high resolution, minimum scattering

• Time resolution    – fast sensor response, large S/N

● Physics studies for lepton colliders provide guidelines:

Lepton Colliders (HL-) LHC 
(ATLAS/CMS)

Material budget < 1% X0 10% X0

Single-point resolution ≤ 3 µm ~ 15µm
Time resolution ~ ps – ns 25ns
Granularity ≤ 25 µm x 25 µm 50µm x 50µm

Radiation tolerance < 1011 neq / cm2 O(1016 neq / cm2)
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CLICdet Vertex Detector
Design driven by flavor tagging

• Minimal scattering

• High-resolution

Requirements

• Low mass
0.2% X0 per layer

• Low power consumption
< 50 mW/cm−2 for air-flow cooling

• High single-point resolution
σSP ~ 3 μm

• Precise time stamping ~ 5 ns

 600 mm 

Current design:

● Double layer sensors

● 100 μm of silicon, 25 μm pixel pitch

● Surface area of ~ 1 m2

● Three barrel double-layers,
2x three spiral double-disks
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CLICdet Tracking Detector
Design driven by
efficiency & momentum resolution

• Many layers, large lever arm

Requirements

• Low mass, high rigidity
1 – 2% X0 per layer

• Good single-point resolution
σSP ~ 7 μm (transverse plane)

• High granularity
few % occupancy from backgrounds

• Precise time stamping ~ 5 ns

Current design:

● Detector with (elongated) pixels

● Max. 200 μm sensor, including electronics

● Surface area of approx. 140 m2

● Leakless water cooling

 4.4 m 

 3 m
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Prospective R&D

Targeted R&D

Guided R&D

Construction    

Collisions

 Define 
requirements from 
physics program,
precision targets

 Explore ideas,
new concepts

 Technology 
evaluation

 Simulations

 Proof-of-principle

 Technology
consolidation

 Demonstrators

 Design 
optimization

 Performance 
studies

 Full-scale 
prototypes,
engineering

 System 
integration

Towards Next-Generation Tracking Detectors
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Next-Generation Vertex & Tracking Detectors

Powering
Mechanical support

Front-end electronics
Sensors

Data transmission

Cooling

Module design

Machine interface

Magnet

CLICdp
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(Some) Sensor Technologies
for Future Tracking Detectors

… 
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Charge Sharing – Inclined Tracks & Lorentz Drift
● Charge sharing: distribution of charge carriers / signal over several strips (pixels)
● Can significantly improve the spatial resolution

● Often used: Inclined particle incidence along x & Lorentz drift along y

e-
h

n n+1 n+2

E

e-

h

n n+1 n+2

E

e-h

n n+1 n+2

E

B
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Position Resolution
● Precision of particle incidence prediction

Just a single pixel struck:
precision limited to variance of uniform distribution 

● Multiple pixel struck (charge sharing):
interpolation using relative energy / charge distribution

● Thinner sensors: less charge sharing… 

Q

x
particle

σ = p /√12
x

σ =
∑
i
Qi xi

∑
j
Q j
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Position Resolution
● Charge sharing improves resolution in case of per-pixel charge information 

● Similar effects from incidence angle and Lorentz drift

● Typical pixel pitches: 
20 – 400 μm

● Typical resolutions:
5 – 15 μm
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Silicon (Pixel)
Detectors

Hybrid Detectors
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Hybrid Silicon Pixel Detectors
● Traditional design of HEP silicon pixel 

consist of sensor and separate readout chip

• Sensor:   pn-junction

• Readout chip: front-end

• Connection: small solder spheres – bump bonding

● Small pixel cell sizes achieved, ~ 25 μm –  limited by interconnects

Relatively high material budget
Interconnects: cost-driver,
limits pixel pitch & thickness (stability)

Established mixed-mode CMOS
Complex circuits possible
Small technology nodes available
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Silicon (Pixel)
Detectors

Hybrid Detectors

Planar Sensors
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Planar Silicon Sensors – The Diode
● Simplest semiconductor detector geometry

● Readout of a full area detector pad

● No spatial information

• Number of channels: 1

● Here:

• Strong p+ and weak n- doping create asymmetric pn-
junction at the sensor surface

• Strong doping (n+) at the backside for Ohmic 
contact to backside metalisation
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Planar Silicon Sensors – Strip Detector

● Segmentation of sensor surface

● Implementation of strips

● Typical pitches: 50 – 100 μm

• Number of channels: N

● Charge carriers propagate towards one or few strips

➔ 1D spatial information on particle traversal

➔ Add second layer for 2D information
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Planar Silicon Sensors – Pixel Detector

● Segmentation of sensor surface 

● Implementation of pixels or pads

● Typical pitches: 50 – 400 μm

• Number of channels: N2

● Charge carriers propagate towards one or few pixels

➔ 2D spatial information on particle traversal
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Example: CMS Phase I Pixel Detector
● Hybrid pixel detector with planar sensors

• 4 barrel layers (30 – 160mm radius)
2x 3 end-cap disks

● ~1900 detector modules
~120M channels

● 150 µm x 100 µm pixels
8 µm (z) / 5 µm (rϕ) resolution

● Material budget:
~ 0.3% X0 per module
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The CLICpix2 Hybrid Prototype
● Readout ASIC designed for CLIC vertex 

detector

• Designed in 65nm CMOS process
(same as RD53 for ATLAS/CMS)

• Matrix of 128 x 128 pixels of 25 x 25 μm

● Goal: development of high-resolution
detector for detector at linear accelerator

● Chip-level bump bonding difficult,
limitation on pixel pitch

Planar sensor

CLICpix2 ASIC
https://doi.org/10.1088/1748-0221/14/06/C06003

https://doi.org/10.1088/1748-0221/14/06/C06003
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Silicon (Pixel)
Detectors

Hybrid Detectors

Planar Sensors

3D Sensors
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3D Silicon Sensors

● p- and n-implants implemented as columns 
through the sensor volume
→ Generation of a horizontal pn-junction

✔ Short drift time → fast!

✔ High (not reduced) signal

✔ High radiation tolerance

✗ High production costs & time
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ATLAS ITk 3D Pixel Sensors
● Sensor for new inner tracker of ATLAS experiment

● 3D sensors for innermost layer of pixel detector

• Very radiation hard (short drift times)

• Different sensor layouts:
50 x 50 μm
25 x 100 μm

● At vertical incidence:
inefficiencies at backside
columns

https://doi.org/10.3389/fphy.2021.624668

https://doi.org/10.3389/fphy.2021.624668
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Silicon (Pixel)
Detectors

Hybrid Detectors

Planar Sensors

3D Sensors

LGADs
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Low Gain Avalanche Diodes (LGADs)
● High electric fields: secondary ionization by charge carriers becomes possible → Impact Ionization

 – Similar to charge multiplication in gaseous detectors 
● High electric fields in small sensor volume fraction generated via thin doping layer

● Different types of LGADs: pads, iLGADs, TI-LGADs, … 
● “Typical” silicon detectors: 
● LGADs (Low Gain Avalanche Diodes) / UFSDs:
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The ATLAS High Granularity Timing Detector
● Mitigate tracking issues from high pile-up at HL-LHC

• Required timing resolution better than 50 ps/track
• ~ 3.7 × 106 channels with 6.4 m2 area
• Radiation hardness 2.5 × 1015 Neq/cm2 and 2.0 MGy

● LGADs with dedicated readout ASIC (ALTIROC)

https://doi.org/10.1016/j.nima.2022.166628

https://doi.org/10.1016/j.nima.2022.166628
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LGAD Mortality – Burnout Events
● Observation: LGADs sometimes suddenly “die”,

indication of single destructive event 

● Proton testbeam allowed to pin-point
impact point of track

● Clear correlation with “crater” location

● Preliminary explanation:

• With high bias voltages, strong electric fields form locally

• Combined with high-ionization events (Landau tail)

• Enough to create conductive path across diode,
burnout due to high current density

● Establishing of safe-operation conditions

https://indico.cern.ch/event/1058977/contributions/4865300/

https://indico.cern.ch/event/1058977/contributions/4865300/
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Silicon (Pixel)
Detectors

Hybrid Detectors

Planar Sensors

3D Sensors

LGADs

ELADs
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Enhanced Lateral Drift Detectors
● Position resolution in thin sensors limited to 

pitch / √12 (almost no charge sharing)

● New concept: enhance charge sharing in
Enhanced LAteral Drift sensors (ELAD)

• Close to theoretical optimum: linear charge sharing

• Deep implants to alter field, improve resolution

• Lateral spread of charges during drift, cluster size ~2

● Challenges:

• Complex production process

• Low-field regions
(recombination)
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Hybridization with Anisotropic Conductive Film
● Alternative to traditional solder-bump bonding

● Adhesive film with conductive micro-particles

• Stochastically distributed in film

• Some spheres end up under bond pads, get deformed, establish contact

● Widely used in display industry in one dimension, challenge: 2D distribution

● Requires careful optimization of

• Film thickness

• # spheres/area

• Bonding force…

● Currently early R&D phase

 ~20μm 

SEM cross-section measurement

Microscope image
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Monolithic Silicon Detectors
● Also called Monolithic Active Pixel Sensors (MAPS)

• Electronics & sensor: same wafer

• Fully integrated: amplification, discrimination & readout

● Shield electronics via additional implants
● Different approaches

• Deep collection diode surrounding electronics

• Separate shielding & collection diode   

Smaller depletion volume & signal
Intricate sensor design
Limited in-pixel functionality

Lower mass than hybrids
No bump-bonding
Cheaper (large scale) manufacturing
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● Shield electronics via deep collection diode around 
electronics

• Allows high bias voltage to be applied

• Fast & large signal, large depletion volume

● Challenge: large collection diode leads to

• large input capacitance

• increased power consumption

Large & Small Collection Electrode

● Electronics outside charge-collection well

• Requires high-resistivity material (e.g. epitaxial 
layer) to allow depletion

• Small collection diode leads to small 
capacitance

● Challenge: effect of p-well potential on electric 
field / charge collection
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HV-CMOS Sensors
● Place all transistors inside deep well

● Deep well acts as electrode

• pn-junction forms between deep well 
and  substrate

● Possible to apply high voltage O(10-100V) over this diode

• High electric field allows for fast
charge collection via drift

• Need to be careful about strong fields
near surface

Annie Meneses
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The MuPix10 HV-MAPS
● Designed for the mu3e experiment at PSI

• 180 nm HV-CMOS technology

• Matrix of 256 x 250 pixels with pitch of 80 x 80 µm²

• Energy + time measurement per pixel

https://arxiv.org/abs/2012.05868

https://arxiv.org/abs/2012.05868
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Low-Capacitance CMOS Sensors
● Instead of using well as electrode:

place next to deep well

• Small sensor capacitance, low noise O(~10e)

• Requires high-resistivity material

• No requirement for HV-compatible process

● Can only apply low bias voltage O(< 6V)

• Only small volume depleted,
partially collecting charge via diffusion

• Requires detailed field optimization
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The ALPIDE Sensor of the ALICE ITS2
● Full Inner Tracking System: 24’000 ALPIDE chips, 

one of the first large-scale detectors with MAPS

● ALPIDE – MAPS in 180 nm CMOS imaging technology

• 512 × 1024 pixels of 29 μm x 27 μm pitch

• Binary detection & readout (hit/no hit)

• Optimized for low power consumption

• Produced on epitaxial layers of 18 – 30 μm

http://dx.doi.org/10.1016/j.nima.2016.05.01
6

ALPIDE pixel cell
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http://dx.doi.org/10.1016/j.nima.2016.05.016
http://dx.doi.org/10.1016/j.nima.2016.05.016
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Sensor Layouts – Improving Signal Formation
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Sensor Layouts – Improving Signal Formation

https://indico.cern.ch/event/1058977/contributions/4636892/

https://indico.cern.ch/event/1058977/contributions/4636892/


29/06/2022S. Spannagel - HighRR Lecture Week - Modern Tracking Detectors84

The CLICTD MAPS Prototype
● Silicon detector prototype for CLIC tracking detector

• 180 nm CMOS imaging process, small collection electrode

• Pixel pitch: 37.5 μm x 30 μm, 30 μm epitaxial layer

• Fully-integrated sensors,
ToA/ToT measurement

● Test bench for sensor designs

• Optimizations e.g. for prompt
signal formation

• Spatial resolution studies

IEEE TNS, vol. 67, no. 10 (2020), 2263 
doi:10.1109/TNS.2020.3019887

significantly
faster peaking time

NIMA 964 (2020) 163784
doi:10.1016/j.nima.2020.163784

https://doi.org/10.1109/TNS.2020.3019887
https://doi.org/10.1016/j.nima.2020.163784
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Time of Arrival & Time over Threshold

 Time over Threshold 

Time of Arrival

Clock

● Energy & space-efficient way to
measure time & charge

● Times of threshold crossing “marked”
on a clock, clock cycles counted

● Especially useful with front-ends
that have linear return-to-baseline
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Smaller CMOS Nodes for Increased Logic Density
● New CMOS imaging technologies become available from foundries

● E.g. 65nm CMOS imaging process – under investigation for HEP detectors

• Lower analog/digital power consumption

• Higher logic density, allow pixels ≤ 25 μm with all necessary features

• Bridging gap in front-end capabilities hybrid ↔ monolithic

● Issues to overcome:

• Accessibility of technologies from vendors

• Analog circuitry stays almost same size,
only digital parts scale well

• Needs to be tested as particle detectors!

180nm

65nm

bonded Tangerine test chip

many transistor test structures, circuits, test pixels, … 
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● Extensive TCAD & Monte Carlo simulations
to optimize sensor response
• Signal formation time
• Efficiency
• Cluster size, resolution

● Compare to data from prototypes
to gain understanding of the technology

TCAD

test chip
waveforms

Understanding a new Technology
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Timing in MAPS Sensors
● Investigation of embedding LGAD-like gain layer in MAPS

● Requires multi-step processing

● Promising results from
PicoAD prototype

https://indico.cern.ch/event/1058977/contributions/4631550/

https://indico.cern.ch/event/1058977/contributions/4631550/
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New Sensors Open Up New Opportunities

Powering
Mechanical support

Front-end electronics
Sensors

Data transmission

Cooling

Module design

CLICdp

Machine interface

Magnet
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