

Packet Marking With eBPF

Tristan Sullivan
University of Victoria

May 5/22

What is eBPF?

● Extended Berkeley Packet Filter; exists since about 2015
(kernel 4.4). Used for tracing and networking

● Definition from docs.cilium.io/en/stable/bpf:
“BPF is a general purpose RISC instruction set and was originally designed for the purpose of writing
programs in a subset of C which can be compiled into BPF instructions through a compiler back end (e.g.
LLVM), so that the kernel can later on map them through an in-kernel JIT compiler into native opcodes for
optimal execution performance inside the kernel.”

● eBPF programs execute when certain kernel hooks occur
– xdp: as soon as network driver receives a packet (ingress only)

– tc: later in the network stack (ingress and egress)

● The skb struct is passed to the eBPF program; gives full
control over every packet

Bcc

● There exists a project to make eBPF useable via a mixture of
python and C: bcc

● Writing and loading eBPF programs with bcc is pretty easy, and
there are plentiful examples: https://github.com/iovisor/bcc/

● Package for RHEL-like OS is called python3-bcc, available on RHEL
8+ and friends (RHEL 7 has python-bcc, which is python2 based)

Packet Marking

● Usability with python makes it easy to turn this into a
flowd backend:
– flowd plugin gets notified of a flow that is to be marked,

passes the flow identifier to the backend

– The backend then updates a data structure that is passed
between the python code and the eBPF program; it is a
hash with IPv6 address as the key and flow label as the
value

– The eBPF program checks if the destination IP of each
IPv6 packet is a key in the hash, and if so, puts the flow
label from the hash onto the packet

Status

● Not fully integrated with flowd yet, but I have the python code to
fill a data structure with IPv6 addresses pointing to flow labels,
and the eBPF code to mark packets with those flow labels:
https://github.com/hep-gc/Packet-Marking

● Next step is to test the impact of the eBPF program on
performance. There was a 100G testbed set up by Starlight and
Compute Canada for SC21 that still exists; I’ve successfully run
my eBPF program on the nodes, will do iperf tests in the
coming days

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

