Wakefield Damping in Distributed Coupling Structures

CERN + SLAC Cool Meeting

Evan Ericson

Alexej Grudiev

CLIC-G* TW structure

- Power in upstream, power out downstream
- HOM waveguides with loads

Distributed coupling structure

- Each cell is connected to waveguide
- Potential for increased high gradient performance

Standing wave (SW) cell pre-optimization

• Adjusted the cell length and outer radius to get correct phase advance and frequency

	SW – Opt0
f _o (GHz)	11.9947
Phi (deg)	180
Q	7140
v _g /c (%)	0
R/Q (Ohm/m)	11219
R (Mohm/m)	80.10
E _s /E _a	2.486
H _s /E _a (mA/V)	4.432
S_c/E_a^2 (mA/V)	0.296

Optimized SW designs

- Opt0 non-optimized SW cell
- Opt1 optimize E_s/E_a for high gradient performance
- Opt2 optimize R for efficiency (same E_s/E_a as TW)
- Opt3 optimize S_c/E_a^2 for high gradient performance

Comparing SW cell options

	unit	TW	SW – Opt0	SW – Opt1	SW – Opt2	SW – Opt3
Iris thickness	mm	1.333	1.333	2.6	2.3	2.35
Iris ellipticity		1.153	1.102	2.400	1.600	1.179
f ₀	GHz	11.9952	11.9947	11.9943	11.9943	11.9939
Q		5843	7140	6930	6940	6920
R/Q	Ohm/m	16515	11219	10980	11208	11368
R	MOhm/m	96.49	80.10	76.09	77.78	78.67
E _s /E _a		1.98	2.486	1.79	1.98	2.11
H _s /E _a	mA/V	3.73	4.432	4.67	4.60	4.59
S_c/E_a^2	mA/V	0.33	0.296	0.34	0.33	0.33

Comparing SW structure options

	unit	TW	SW – Opt0	SW – Opt1	SW – Opt2	SW – Opt3	limit
N		26+2	18	18	18	18	
L	mm	230	225	225	225	225	
E _{acc} load avg	MV/m	100	100	100	100	100	
V _{acc}	MV	23	22.5	22.5	22.5	22.5	
P _{diss}	MW	33.17	28.09	29.57	28.93	28.60	
P _b	MW	27.232	26.64	26.64	26.64	26.64	
Po	MW	60.4	54.73	56.21	55.57	55.24	
τ	ns		64.27	63.40	63.05	62.65	
E _{acc} ^{UL} avg	MV/m	120	139.58	137.87	138.60	138.98	
t _{fill}	ns	62.6	80.99	81.92	80.61	79.65	
tp	ns	218.6	236.99	237.92	236.61	235.65	
total RF-beam efficiency	%	27.8	32.04	31.08	31.61	31.93	
Ea in middle cell	MV/m	105	100	100	100	100	
Es	MV/m	232	248.60	179.00	198.00	211.00	240
Hs	MA/m	0.39	0.44	0.47	0.46	0.46	
ΔT - pessimistic	К	49.70	42.06	46.79	45.27	44.98	40
Sc scaled to 200 ns	MW/mm ²	5.67	3.13	3.60	3.49	3.49	4

Neck length

Peaks at 17, 22 GHz

Impedance fitting

Asymmetric impedance peaks, Cutoff near 16 GHz

	Mode 1	Mode 2	Mode 3
f (GHz)	17*	22*	28.2
Q_ext	10*	20*	34
Z = R/2	9,500	22,000	6,200

* Confirmed by HFSS

slotLength=7.4 mm

Wakepotential

• Mode 2 dominates at location of 2nd bunch

Q = 20 -> 15

Cryogenic LINAC

			SW -				CLIC DB SOURCE		
		TW	Opt3	CLIC DB SOURCE		JRCE limits 77K		7K	limits
Q		5637	6920	6920	6920		15570	15570	
R/Q	Ohm/m	16227	11368	11368	11368		11368	11368	
R	MOhm/m	91.47	78.67	78.67	78.67		177.00	177.00	
Eaccload avg	MV/m	100	100	109.75	100		142.25	100	
number of bunches in train		312	312	312	330		248	319	
Pin	MW	60.4	55.24	63.69	55.24	63.5	63.62	39.35	63.5
tp	ns	240.5	235.65	241.73	244.65	244	244.19	244.26	244
total RF-beam efficiency	%	27.7	31.92	29.63	32.52		30.25	44.20	
relative RF-beam efficiency		1.00	1.15	1.07	1.17		1.09	1.60	
ΔT - pessimistic	К	49.7	39.51	40.02	40.26	~40	19.25	19.26	~40
Sc scaled to 200 ns	MW/mm ²	5.5	3.485	4.23	3.53	~4	7.14	3.527	~8

Cryogenic LINAC II

		TW	SW-Opt3	CLIC DB	SOURCE	CLIC DB SO	URCE 77K
Eaccload avg	MV/m	100	100	109.75	100	142.25	100
relative RF-beam efficiency		1.00	1.15	1.07	1.17	1.09	1.60
				NEW SOURCE		NEW SOURCE 77K	
Eaccload avg	MV/m			106.85	100	147.25	100
relative RF-beam efficiency				1.09	1.17	1.18	2.25

• Assumption: square RF pulse, temperature rise likely smaller

Conclusion

