

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Radiation damage: influence on the absorption of near-infrared light in silicon

Eckhart Fretwurst, Robert Klanner, Stephan Martens, Jörn Schwandt, Annika Vauth

40th RD50 Workshop CERN June 21, 2022

Impact of Defects on Silicon Sensors

Increasing radiation load on detectors \rightarrow Three main effects on the device performace:

Leakage current increase

increased noise, increased power consumption

Effective space charge

change in electric field distribution and depletion voltage double junction effects, underdepleted operation

Trapping of charge carriers by defect levels can reduce overall sensor signal depends on trapping time and concentration of defects

Sensor effects - but what about impact on silicon itself?

Util Universität Hamburg Der redscuwe | Der Hamburg A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si

Investigated Si samples:

 $\label{eq:FZ} \begin{array}{l} \mbox{FZ n-type Si}, \approx 3.5 \, \mbox{k} \Omega \cdot \mbox{cm}, \\ \left< 111 \right> \mbox{crystal orientation}, \\ \mbox{Double-side polished} \end{array}$

 Thickness d=280 μm, 24 GeV/c proton irradiation to Φ_{eq} =(2.4, 6.1, 4.9, 8.6)×10¹⁵ cm⁻² (CERN PS East Area)

 d=3000 μm, (2 samples per fluence) Reactor neutron irradiation to Φ_{eq} =(1, 5, 10, 30, 50, 100)×10¹⁵ cm⁻² (JSI TRIGA reactor - thanks to the colleagues at the Jozef Stefan Institute!)

Transmission measurements at room temperature with Cary 5000 spectrophotometer

- For 280 μm samples (2019): $950 \,\mathrm{nm} < \lambda < 1350 \,\mathrm{nm}$ [j.nima.2020.163955]
- ► For 3000 µm samples (2021/22): 950 nm $< \lambda <$ 2000 nm

A. Vauth | RD50. 21.06.2022 | Near IR Absorption in radiation damaged Si IRE L DER BILDUNG

Transmission measurement

- Rapid decrease of transmission for λ < 1.1 μm (E_{gap} = 1.124 eV → λ = 1.103 μm)
 Broad transmission minimum at λ ≈ 1.8 μm
- Steady decrease of transmission/increase of absorption with fluence

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si

Absorption length

IШ

Der rosschutz universität Hamburg A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si

Radiation-induced absorption

Define absorption contribution induced by radiation:

 $\alpha_{\rm irr}(\lambda, \Phi) = \alpha(\lambda, \Phi) - \alpha(\lambda, \Phi = 0)$

*α*_{irr} proportional to Φ_{eq} up to Φ_{eq} ≈ 4 × 10¹⁶ cm⁻², above indications of flattening
 *α*_{irr} decreases up to λ ≈ 1.6 µm, peak around 1.8 µm (already seen in transmission)

L Universität Hamburg DER FORSCHUNG | DER BLEHRE | DER BLEDUNG A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si

24 GeV/c protons vs reactor neutrons

Radiation damage depends on particle type and energy (-> cluster defects vs point defects)

> Little difference in α_{irr} for reactor n and and 24 GeV/c p at similar fluence

> Difference in λ dependence?

Der Forschung | Der lehre | Der Bildung A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si

Energy needed to excite an electron from valence band to conduction band: Dependent on temperature and doping (decrease with N_d)

Also dependent on irradiation fluence?

 $\begin{array}{l} \mbox{Silicon} = \mbox{indirect semiconductor,} \\ \mbox{i.e. phonon absorption or emission needed} \\ \alpha({\it E}_{\gamma}) \propto ({\it E}_{\gamma} \pm {\it E}_{phonon} - {\it E}_{gap})^2 \quad \mbox{for } {\it E}_{\gamma} \geq {\it E}_{gap} \end{array}$

Change in $E_{\rm gap} \rightarrow$ change in absorption edge

UН

[doi.org/10.1007/978-3-642-00710-1]

UН

UН

IШ

using $E_{\text{exciton}} = 15 \,\text{meV}$

 E_{gap} and $E_{\text{phonon}} \sim \text{independent of fluence, agreement with literature}^{(*)}$ ^(*) e.g. Alex *et al.*, J. Appl. Phys. 79, 6943 (1996): 295K: 1.124 ± 0.002 eV, 293K: 1.125 ± 0.002 eV Local peak in absorption around 1.8 $\mu m \rightarrow$ Silicon divacancy

"Divacancy" defect:

- a) Agglomoration of two vacencies
- b) Simultaneous displacement of two adjacent Si lattice atoms

Four charge states (+1, 0, -1, -2) \rightarrow three deep energy levels

 $1.8\,\mu m$, $3.3\,\mu m$ and $3.9\,\mu m$ absorption bands from excitation of the divacancy

Data agrees with literature: Peak height [Cheng, Lori, 1968], shape [Fan, Ramdas, 1959]

Annealing studies to study "healing" of this defect

Local peak in absorption around 1.8 $\mu m \rightarrow$ Silicon divacancy

"Divacancy" defect:

a) Agglomoration of two vacencies

b) Simultaneous displacement of two adjacent Si lattice atoms

Four charge states (+1, 0, -1, -2) \rightarrow three deep energy levels

 $1.8\,\mu m$, $3.3\,\mu m$ and $3.9\,\mu m$ absorption bands from excitation of the divacancy

Data agrees with literature: Peak height [Cheng, Lori, 1968], shape [Fan, Ramdas, 1959]

Annealing studies to study "healing" of this defect

Universität Hamburg Der rotscourke | Der Hisker | Der Billowic A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si

Annealing

Iso-chronal annealing, **15 min** per temperature at 80, 100, 120, 150, 180, 210, 240, 270, 300, 330 [°C]

Annealed four samples: $\Phi_{eq} = (0, 10, 50, 100) \times 10^{15} \text{ cm}^{-2}$

Annealing: Transmission recovery

- Clear impact of annealing for the three irreadiated samples studied here
- Reduction of defect-induced optical absorption at 1.8 µm compatible with literature

Cheng et.al, 1966

Absorption coefficient after annealing

Calculate absorption

Absorption coefficient after annealing

- Calculate absorption
- Compare to non-irradiated sample measurement for each temperature step

Absorption coefficient after annealing

- Calculate absorption
- Compare to non-irradiated sample measurement for each temperature step
- Large fraction of optically active defects annealed after the last step (15 min at 330 °C)

(plots for 10E15 and 100E15 in the backup slides)

Universität Hamburg Der Forschulwer | Der Hender | Der Hildowic | A. Vauth | RD50, 21.06.2022 | Near IR Absorption in radiation damaged Si Goal: understand behaviour of silion at high irradiations

Near-Infrared measurements to investigate silicon properties:

- Increase in absorption with fluence, Similar for p- and n-irradiation
- > Can determine band gap / phonon energy: $E_{
 m gap}$ changes by \lesssim 1 meV for $\Phi_{
 m eq}$ =(0 to 1)×10¹⁷ cm⁻²
- Observation of "1.8 µm" absorption band from neutral di-vacancy
- Transmission largely restored after annealing at 330 °C

Backup slides

Principle spectro-photo-meter

Single-beam and double beam systems exist

Double-beam system:

Monochromatic light is split

- in a reference beam
- and a sample beam (passing the sample) before hitting a detector.

Transmittance measurement:

- Ratio of sample to reference beam intensity
- Apply a baseline correction ("blank") (measurement without any sample)

$$\%T = \frac{\frac{S_{Meas}}{R_{Meas}}}{\frac{S_{Blank}}{R_{Blank}}} \times 100$$

Annealing of the 1.8 um line from literature: (iso-chronal, 20 min)

Transmission measurements with empty sample holder

Transmission measurements after annealing

Transmission measurements after annealing

Absorption after annealing, compared to non-irradiated sample

FZ3-3-8_10e15

Absorption after annealing, compared to non-irradiated sample

FZ3-3-12_100e15

