

Deveopment of 3D SiC radiation detector

Hongwei Liang¹, Xiaochuan Xia¹, Zhenzhong Zhang¹, Ruiliang Xu¹

Xin Shi², RuiRui Fan³, Xinbo Zou⁴

¹ Dalian University of Technology

- ² Institute of High Energy Physics Chinese Academy of Sciences
- ³ Spallation Neutron Source Science Cente

⁴ School of Information Science and Technology

22-6-2022

Outline _____

- Motivation
- Fabrication of 3D SiC radiation detector
- Characteristics of 3D SiC radiation detector
- Prospect

Advantages of semiconductor radiation detectors

Motivation for the development of 3D SiC radiation detector

- 1. Wide band gap (3.2 eV), High breakdown field strength, Mature process technology
- 2. Narrow electrode spacing good time resolution and charge collection
- 3. Good singlecrystal quality Thick thickness larger charge collection and signal
- 4. More radiation resistant than 2D SiC

3D-SiC simulation – time resolution:

Method of making 3D structure

- 1. ICP etching (Inductive Coupled Plasma Emission Spectrometer Etch)
- 2. Chemical or electrochemical etching
- 3. Laser drilling

Advantage of laser drilling technology

- 1. Suitable for a variety of materials
- 2. Few steps and parameters
- 3. Short process time

Giulio Pellegrini and P. Roy *et al.*, "Technology development of 3D detectors for high-energy physics and imaging" Nuclear Instruments and Methods in Physics Research A 487 (2002) 19–26.

Fig. 2 SEM images of top view of drilled craters with F = 60 J/cm² beam irradiation, entrance of the hole enlarged with increasing pr of 1064 nm irradiance. In each figure, characters "G" and "B" stand for Gaussian and Bessel beams, respectively. In the case of Bessel water environment led to formation of cracks

Byunggi Kim and Ryoichi Iida *et al.*, "Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias" Appl. Phys. A (2017) 123:392.

Lukang Wang and You Zhao *et al.*, "Design and Fabrication of Bulk Micromachined 4H-SiC Piezoresistive Pressure Chips Based on Femtosecond Laser Technology" Micromachines 2021, 12, 56.

Process flow of making 3D SiC structure

Table 1 Laser processing parameters

Semi-insulating SiC single crystal 350 µm thickness	Device model	FM-UVPM3A
	Laser wavelength	355nm
	Processing power	3W
	Pulse Width	12ps
	Processing speed	100mm/s
Figure 1 Laser drilling preparation process	Processing time	30min/pcs

Table 2 Diameter of the cylinder at the top and bottom of the sample

Hole	Diameter (µm)
Entrance	103
Exit	81

The taper of the through hole could be calculated as: (103-81) / 362≈1/16

Morphology and composition of through hole

Fig. 2 SEM cross-sectional images of laserdrilled through holes in SiC (a) overall and (b)-(d) partial enlarge morphology **Fig. 3** EDS mapping of silicon and carbon element, (a) the selected area morphology, (b) distribution of silicon element, (c) distribution of carbon element

Crystal quality of the throuth hole after laser drilling

Fig.4 Schematic of Raman test area

Undoped 4H parallel		Undoped 4H perpendicular	
Peak	Slope (cm ⁻¹ /K)	Peak	Slope (cm ⁻¹ /K)
207.2	-0.0034	268.1	-7.45E-4
268.1	-0.0018	612.2	-0.0056
612.5	-0.0086	785.4	-0.0157
797.4	-0.0164	800.3	-0.0144
799.4	-0.0164	840.9	-0.0131
968.3	-0.0182	974.6	-0.0157

J. Raman Spectrosc. 2009, 40, 1867-1874

 Table 3 Raman peak positions of 4H SiC

Raman measurment

Fig. 5 the micro Raman resulets obtained in/out of the hole, as well as on the sample surface (a) full spectrum (b) and (c) local magnification

It shows that SiC sensitive region maintains high crystal quality after laser drilling.

Process flow of making 3D SiC structure

Fig. 6 Process of indium filling

Fig. 7 Image of the filled metal indium electrode

Entrance hole

Fig. 8 Electrode interconnection and packaging

9

Electrical characteristics of 3D SiC structure

Discrete electrode test

Fig. 9 The test process diagram and electrode number

Interconnection electrode test

Fig. 11 Schematic of electrode interconnection

Fig. 10 I-V curve of the discrete electrode device

Fig. 12 I-V curve of the interconnection electrode device

Particle response of 3D SiC structure

Fig. 13 Schematic diagram of test system

Signal of 3D-SiC@1V/µm

The signal rise up from 10% to 90% of the maximum value is 662.75 ps Entire signal time 1.5 ns

Fig. 14 Alpha particle response result of 3D SiC detector

Signal of SBD @-60V

The signal rise up from 10% to 90% of the maximum value is 914.06 ps Entire signal time 15.1 ns

11

Fig. 15 Alpha particle response result of Schottky devices

- Making terminal protection structure.
- Further Study radiation detection performance (Time resolution).
- Carry out multi-device integration research,

