

Surface and bulk properties of silicon obtained from quality control test structures for CMS

Thomas Bergauer, Kostas Damanakis, Marko Dragicevic, <u>Veronika Kraus</u>, Moritz Wiehe 40th RD50 Workshop (CERN) 22 June 2022

The CMS Phase-2 Upgrade

Motivation for Process Quality Control (PQC): High-Luminosity LHC requires full upgrade of the CMS detector; tracker and calorimeter endcap will be replaced and new silicon sensors incorporated

Tracker:

- ~ 200m² silicon
- Pixel sensors for inner tracker
- Strip sensors (ACcoupled) and Macropixel sensors (DC-coupled) for outer tracker

High-granularity calorimeter:

- ~ 600m² silicon
- DC-coupled pad sensors
- Different wafer thicknesses for regions with different fluences

Fast measurements; Additional parameters accessible

Tracker and HGCAL silicon sensors

- Both Tracker and HGCAL sensors are manufactured on ptype substrate
- Both use p-stop isolation
- Produced by Hamamatsu
 Photonics K.K
- Tracker: 6"
 technology
- HGCAL: 8"
 technology

Selected sensor qualification specifications	Tracker	HGCAL
Substrate resistivity	> 3.5 kΩcm	> 3.0 kΩcm
Physical thickness	320 µm	300 µm
		200 µm
		300 µm
Active thickness	290 µm	300 µm (FZ)
		200 µm (FZ)
		120 µm (epitaxial growth)
Full depletion voltage	< 350 V	300 μm: < 370 V
		200 µm: < 160 V
		120 µm: < 70 V
Types	2S and PS-s strip sensors (AC-coupled); PS-p Macropixel sensors (DC coupled)	LH (low density), HD (high density) and Multi-geometry Wafers (all DC-coupled)

PQC test structure set

- Dedicated structures for each process parameter
- Set of 15 flutes each with access to several different structures:
 - Larger structures (Diodes, MOS and GCD) routed to flute
 - Smaller structures (VdP, CBKR, FET, ...) contained "within" flute

Same test structure set on Tracker and HGCAL Wafers!

PQC testing method

Test structure set on cut-off region of each Wafer

All test structures are accessible using a standardised set of contact pads: **Flute**

- 2 rows of 10 pads in a 200µm grid
- 100 x 100 pad size

Contacting the flute is best done with a probe card

PQC at **HEPHY**: Setup

Fully custom built PQC setup:

- Several instruments connected to a switching matrix
- Highly automated measurement process

Instruments:

- SMU: Keithley 2410
- Electrometer: *Keithley 6517B*
- LCR Meter: *Keysight 4980A*
- Switching system: *Keithley* 7072-HV matrix cards in a *Keithley* 707B mainframe

PQC at other institutes

Similar setups for Tracker and HGCAL PQC tests at various other institutes.

Tracker:

- Brown University
- INFN Perugia
- NCSR Demokritos

NCSR Demokritos

22 June 2022

Perugia

HGCAL: Florida State University (FSU)

AUSTRIAN

SCIENCES

HEPHY INSTITUTE OF HIGH ENERGY PHYSICS

Selected PQC test structures and measurements

Overview

Test structure	Accesible process parameters	 Two types of PQC test structures: 1. Characterization of sensor with faster measurement methods (e.g., Bulk resistivity from Van-der-Pauw structures instead of Diodes) 2. Structures with access to additional production process parameters (e.g., oxide quality)
Diode	Full depletion voltage, bulk resistivity, bulk doping concentration	
MOS capacitor	Flatband voltage, fixed oxide charge concentration, oxide thickness	
Gate controlled Diode	Surface generation current and velocity	
MOSFET	Threshold voltage, p-stop doping concentration and implantation depth	
Van-der-Pauw structures	Sheet resistance of various materials and implants	

PQC test structure: MOS-Capacitor

Process parameters:

• Oxide charge concentration: $C_{OX} (MNS = V_{fh})$

$$V_{ox} = \frac{C_{ox} \left(\phi_{MS} - V_{fb}\right)}{qA_G}$$

• Oxide thickness:
$$t_{ox} = \varepsilon_{SiO_2} \frac{A_G}{C_{ox}}$$

• Flatband voltage V_{fb}

Selected MOS-C results

Oxide Quality and differences between Type A,B,C and D oxide of **HGCAL** test structures determined:

Oxide variants B,C and D show similar behavior, type A rejected. Comparison to **Tracker** (already in production): properties should be similar!

- I. Measurements during sensor development: Establish differences between oxide types/production processes
- II. Main purpose of PQC: Measurements during production

PQC test structure: Diode

Process parameters:

- Full depletion voltage V_{fd}
- Bulk resistivity
- Bulk carrier concentration

12

PQC test structure: Gate-Controlled Diode

Process parameters:

- Surface current: $I_{sg} = I_{dep} I_{inv}$
- Surface generation velocity
- Si-SiO₂ interface quality
- Interface traps

Selected Gate-Controlled Diode (GCD) results

Si-SiO₂ interface quality of different oxide types A,B,C, D (left plot) and wafer thicknesses (right plots) of **HGCAL** test structures determined:

Surface generation velocity:

$$s_g = \frac{I_{sg}}{q \; n_i A_G}$$

No significant differences between oxide types. Observation: Dependence of surface generation velocity (and surface current) on sensor thickness.

PQC test structure: Van-der-Pauw structures

Process parameters: sheet resistance of thin films for different materials and implants (n+, p-stop and p-edge implant layers, metaland polysilicon layer, bulk material)

Example of bulk VdP measurement

(tariasian)

PQC test structure: MOSFET

Process parameters:

- Threshold voltage V_{th}
- p-stop doping concentration
- Inter-channel resistance

16

Selected MOSFET results

MOSFETs are used to determine inter-channel features (inter-channel resistance, p-stop properties). Measurements of **HGCAL** test structures:

- *V_{th}*: minimal Gate-Source voltage to obtain a conductive channel between Source and Drain
- FET threshold voltage differs for four oxide types, Type C for final production

Selected VdP results

Bulk resistivity of **Tracker** sensors monitored over production time:

 \Rightarrow bulk resistivity and full depletion voltage could be improved!

- I. Measurements during sensor development
- *II. Measurements during production: monitor stability of the production process and confirm resulting devices*

Outlook: Neutron irradiated test structures

3 neutron irradiated sensors available for measurements (HGCAL,

epi, 120µm):

- Proto-A 300012: 1.4E16 neq/cm²
- Proto-A 300009: 1E16 neq/cm²
- Proto-A 300032: 5.5E15 neq/cm²

 \Rightarrow PQC method also applicable for irradiated test structures? Annealing before measurement: 80min at 60°C

Example 1: Neutron irradiated MOSFET

Veronika Kraus - HEPHY Vienna

Example 2: Neutron irradiated MOS-C

Exemplary PQC measurement of not irradiated MOS-C test structure

- Applied voltages increased for irradiated MOS-Cs
- Measurement results not fully understood yet!
- Further plan: investigate frequency dependance

Summary

Process Quality Control establishes a fast method to **test Tracker and HGCAL sensors** for the CMS Phase-2 Upgrade.

- The PQC test method can be used to do **studies in the sensor development phase**.
- The aim of PQC is to **monitor mass production**.

Process parameters get obtained from **dedicated test structures** like MOS-Capacitors, MOSFETs, Diodes and others.

Work in progress: PQC measurements of irradiated test structures.

Thanks for your attention!

Thanks to CMS HGCAL and Tracker groups!

Backup

Particle fluences in HGCAL

- Electromagnetic compartment of HGCAL uses silicon sensors (high fluence regions)
- Hadronic compartment uses
 silicon sensors and scintillators
- For regions with different fluences: three different active thicknesses (120µm, 200µm and 300µm) and two different cell granularities (low density and high density)

FLUKA simulation of particle fluence in 1 MeV neq/cm² accumulated in HGCAL after an integrated luminosity of 3000 fb⁻¹ (from the CMS Collaboration)

Further test structures

All PCQ test structures:

Test structure	Process parameters
Diode	Leakage current, full depletion voltage, bulk resistivity, bulk carrier concentration, doping profile, bulk recombination lifetime, bulk gener- ation lifetime
MOS capacitor (MOS-C)	Flatband voltage, fixed oxide charge concentra- tion, oxide trapped charge, mobile oxide charge, interface trapped charge, oxide thickness, bulk carrier density
Gate-controlled diode (GCD)	Surface generation velocity, interface trap den- sity, bulk generation lifetime
Van-der-Pauw structures	Sheet resistance of thin films, implant resistivity and doping concentration, line width
Meander	Sheet resistance
Four-terminal resistivity test structure	Bulk resistivity
MOSFET	Threshold voltage, <i>p</i> -stop doping concentra- tion and implantation depth, inter-channel re-
Cross-brigde Kelvin resistor (CBKR)	Contact resistance, specific contact resistivity
Dialectric handled and the test of the state	Process quality of contacts
Capacitor with n^+ implant	Coupling capacitance, thickness of the coupling dielectric dielectric
Mask misalignment test structure	Relative misalignment of lithography masks
SRP test structure	Carrier density profile
SIMS test structure	Dopant concentration profile

Other test structures on the Wafer:

- Diodes and MOS-Cs in various configurations
- Legacy test structures
- Mini sensors
- SIMS, SRP fields ad round FETs

Veronika Kraus - HEPHY Vienna

MOS-C measurements: Oxide Types

Four options for the silicon oxide process: A, B, C, D

► A = old STD -5V , B = old STD -2V,

C = new type C, D = entirely new type

 Properties should be closest to outer tracker sensors in terms of fabrication and characteristics

X-ray irradiation study at CERN

PQC test structure: Diode

Not high voltage stable! Problems:

- Long rooting necessary
- Open guard ring for connection
- \Rightarrow Still reliable up to ~400V!

Alternative on PQC test structure set: Van-der-Pauw Bulk measurements

Diode without edge ring

Diode with additional edge ring

Different diode layouts for two PQC halfmoons: An additional edge-ring was added to the lowerright diode \rightarrow improvement of IV/CV measurements!

NERGY PHYSICS

Example 3: Neutron irradiated GCD

PQC test structure set includes two GCDs with equal external dimensions but different gate widths: 50µm (GCD) and 70µm (GCD05)

Exemplary PQC GCD measurement of unirradiated test structure

- Applied voltages increased for irradiated GCDs
- Measurement results not fully understood yet! ٠