Update on the ATLAS ITk Silicon Strip Sensors – Preproduction experience

Thomas Koffas

(on behalf of the ATLAS ITk Strip Sensor working group)

LHC Upgrades

The New Inner Tracker (ITk)

The New Inner Tracker (ITk)

New Strip System

~165m² of silicon 17888 modules ~60 Mega-channels

The New Inner Tracker (ITk)

New Pixel System

~13m² of active area 9400 modules ~1.4 Giga-channels

The ITk Layout

- 4 strip and 5 pixel (flat + inclined) barrel layers
- 2×6 strip disks and a novel pixel ring structure
- Coverage up to $\eta=4$ with at least 9 space-points per track

ITk Strips Components

ITk Strip Sensors

8 sensor geometries:

- 2 for barrel, 6 for endcaps
- 320µm thick n-in-p silicon
- 75.5µm strip pitch (**barrel**)
- $70\mu m 80\mu m$ pitch in **petals**
- One sensor per wafer
 - Surrounded by test structures
- High reverse bias voltage (-500V)

SS, LS are barrel, R# are end-cap

Strip Sensor QC

QC sensor tests

<u>Tests on every sensor</u>

- Human visual inspection (Vis. Insp.)
- Machine visual capture (Vis. Cap.)
- Metrology (sensor bow and thickness)
- IV and CV

<u>Tests on sample sensors (2% - 10%)</u>

- Leakage current stability (Curr. Stab.)
- Full strip tests (Full Str.)
- Detailed strip tests

QC sensor test sites

- Barrel sensors
 - KEK/Tsukuba
 - SCIPP
 - Cambridge U.
 - QMUL

- Endcap sensors
 - Prague
 - TRIUMF/SFU
 - Carleton

Strip Sensor QA

• Quality Control (QC)

- Checks the fulfilment of the ATLAS specifications with tests on main sensors
- Quality Assurance (QA)
 - Monitors the <u>fabrication process</u> to <u>detect deviations</u> and <u>predict tendencies</u> of key parameters
 - Performed on test structures: minis, testchip, diode
 - Tests can be <u>destructive</u>: irradiations

Irradiation plan:

- From every wafer one Testchip&MD8 and one Mini&MD8 are diced
- From every batch at least:
 - One Mini+MD8 is irradiated for displacement damage (protons or neutrons)
 - One Testchip&MD8is irradiated for ionization damage (proton or gamma)

QA-CCE measurements

- Irradiated mini sensors are tested after annealing for 80 minutes at 60° C
- Measurement of CCE as response to a 90Sr $\beta\text{-source}$

QA-Testchip measurements

Direct measurement of key technological and device parameters with several test structures: Quality of field and coupling oxide, Interstrip properties, Resistivity of conductive layers,...

Pre-production Strip Sensor QC

List of deliveries and distribution

- Production sensors (Barrel + Endcap): 20800
- Pre-production (5% of production): 1041
- 1016 sensors to QC sites, 25 sensors reserved for specific tasks (e.g. irradiation)
- Additional pre-production barrel sensors (prototype): 60

	2020-11-23	Shipn	nent w	eeksi	in 2020) and	quanti	ities												
Order	Calendar week	2		6		8		10		12		14		16				Total		
	The week of	06-	Jan	03-	Feb	17-	Feb	02-	Mar	16-	Mar	30-	Mar	13-	Apr	15-	Jul		QC Cluster	No.
	Real (if different)											08-	Jun	08-	-Jun				UK (CAM+QMUL)	378
VEV	ATLAS18SS									159	SCP							159	Prague (PRG)	205
NEN	ATLAS18LS									159	SCP							159	CA (CRL+VAN)	200
	ATLAS18SS	0		20	CAM							139	CAM					159	US (KEK+SCP)	318
	ATLAS18LS	17	CAM	4	CAM							138	CAM					159		
	ATLAS18SS proto	14 CAM										46						60		
	ATI AS18R0			7	CRI					20	PRG			18	CRI			45	Cambridge	CAM
CEDN				,						20				10	CITE	47			Queen Mary	QMU
CERN	ATLAS18R1			8	PRG					20	VAN					17	PKG	45	Prague	PRG
	ATLAS18R2					5	PRG	25	CRL	15	PRG							45	Carleton	CRL
	ATLAS18R3					5	PRG	25	CRL			35	PRG	25	CRL			90	Vancouver	VAN
	ATLAS18R4					5	VAN	15	PRG			45	PRG			25	VAN	90	SCIPP	SCP
	ATLAS18R5					5	PRG	25	VAN			35	PRG			25	VAN	90		
	N(sensors) per de	17		39		20		90		373		392		43		67		1041		

Examples: Metrology & Visual Capture

Goal:

- Verify sensor shape and bow suitable for module building and stave/petal mounting.
 - Bow <200μm, thickness 320μm±15μm
- Provide a detailed snapshot of sensor condition upon arrival

Requirements:

- Non-contact CMM to probe height on matrix of 11x11 points on freely suspended sensor.
 - Resolution: <5µm RMS
- Capable of fully automatic image capture of the entire sensor without intervention
 - Required minimum resolution: 10kdpi (2.54µm/pixel)

Examples: IV/CV/Current Stability

Goal:

- Verify sensor basic electrical behavior
 - Breakdown voltage >500V
 - Normalized leakage current <100nA/cm² @500V, 20^oC
 - Depletion voltage ≤ 350 V

Requirements:

- simultaneous measurement of multiple sensors mounted and wire-bonded on sensor jigs/module frames carried out inside a ESD safe dry cabinet with active control to ensure stable and dry condition
- Automated scripts (LabVIEW) control for test procedure Stability Plot

 $V_{BD} = 500 V$

Examples: Full Strip Test

Goal:

- Verify the manufacturing process quality and uniformity of electrical characteristics throughout the wafer surface.
- Each individual strip is contacted to identify metal shorts, broken implants, faulty bias resistors or low inter-strip isolation, and pinholes or punch-throughs in the dielectrics.

Requirements:

- Semi-automatic probe-station, precise SMU's, LCR meter, HV switch matrix and muxes, temperature and humidity monitoring and/or control.
- Automated scripts (LabVIEW) control for test procedure
- Endcap sensors are tested by single needle, for barrel sensors probe card can be used to speed up the test from \sim 14h, to < 2.5h

Pre-production Strip Sensor QC Yield

Туре	Visual Inspection	Metrology	Thickness	IV	CV	Current Stability	Full Strip
Barrel	99.7%	100%	100%	98.7%	100%	99.6%	100%
Endcap	99.5%	100%	99.3%	96.3%	100%	94.8%	93.3%
Total	99.6%	100%	99.7%	97.8%	100%	98.5%	99%

- Results after extensive recovery efforts (see following slides)
 - 43 sensors failed the IV test, 20 recovered
 - 10 sensors failed the full strip test (low R_{bias} , high C_{coupl}), 6 recovered
 - Variety of recovery techniques applied
- Additional 9 sensors failed the leakage current stability test
 - Showed current variations >15%
- 4 sensors failed visual inspection upon arrival
 - 2 sensors with deep scratches, 1 with chipped edge, 1 broken

Recovery Methods Overview

- Effect on performance after sensor dry storage for several months
 - Performed IV tests
- Additionally: bake-out and UV irradiations
- Leakage current stability test also performed, e.g. after dry storage as proxy for sensor training

Institute	Sensors	Dry Storage	Stability Test	Bake-out	UV*
SCIPP		5-10% (Desiccant)	40 hours, 300 V, dry atmosphere	160C 16h (Oven)	-
QMUL	Barrel	6.5% (Desiccant + N ₂ purge)	40 hours, 500 V, <2%	-	-
Cambridge		5% (Desiccant + N ₂ purge)	40 hours, 500 V, Dry atmosphere	160C 16h (Vacuum oven)	-
Prague		1% (Desiccant + N ₂ flush)	-	160C 16h (Oven and probe station)	UV LEDs (330 mW/395-410 nm/350 mA, 0.5-1 hour)
Carleton	End-cap	<2% (Desiccant)	24-40 hours, 450-700 V, <2%	150C 24h (PECVD vacuum chamber)	-
Vancouver		TRIUMF: <5% (Dry air flow)	40 hours, 450 V,	160C 16h	-
		SFU: <5% (Desiccant + N ₂ flow)	<5%	(Vacuum oven)	

Recovery: Dry Storage/Training

SS VPX32407-W0016⁻

——SS:VPX32415-W00268

- 26 sensors were monitored during months of dry storage, occasionally complemented with training
 - 21 sensors (81%) improved showing higher breakdown voltage
 - 3 sensors remained ~same
 - 1 sensor deteriorated

R3 VPX32482-W00058

R3 VPX32482-W00082

R3: VPX32482-W00093 ---- SS: VPX32407-W00156

NOTE: Sensors that tend to improve exhibit training effect when holding at 700V for 30s during IV

Recovery: Bake-out

- 19 sensors were baked out
 - 15 sensors (78.9%) showed improved performance after bake-out
 - 4 sensors remained ~same

NOTE: Bake-out appears to accelerate the recovery of sensors that would have recovered in any case after staying in dry storage for extended periods of time

Recovery: UV Irradiation

- 2 sensors were irradiated with UV light (centered at 354nm)
 - Both sensors improved their IV performance

NOTE: UV irradiation has become the preferred performance recovery method during production

Humidity Sensitivity

- Observed for prototype and pre-production full-size sensors
 - Appears when sensors are exposed for relatively long periods to high RH
 - Even without biasing when e.g. shipped
 - Always results in lower breakdown voltages and/or high leakage current
- Most sensors recover fast and exhibit higher breakdown voltages after dry storage
 - Effect irreversible after biasing a sensor for long periods under high RH
- HV breakdown due to hotspots located at the edge structure of the sensor
- Also studied sensors from special process splits provided by HPK in attempt to reduce effect
 - Thicker passivation (type C) allows for faster recovery after dry storage
 - Sensors with p-spray treatment (type D) show consistently higher breakdown voltages at high RH
- For production stay with original fabrication process from HPK
 - Established strict sensor storage requirements (<10% RH)
 - Minimized sensor exposure to high RH while sensor is biased
 - Log individual sensor exposure to ambient environmental conditions

Summary

- Sensor pre-production provided excellent opportunities to prepare the infrastructure to handle production
- Part flows established and fairly well tested using CERN as the central hub
- Pre-production was a very significant ramp-up in terms of production-style testing:
 - Did NOT find major issues
 - All 8 sensor types/layouts look OK a significant accomplishment made possible with >23 layout verification iterations with HPK
- Many lessons learned all valuable for the production phase of the project
 - Handling and shipping, database interactions, damaged wafers, interactions with HPK, contract execution
- Strip sensor production commenced in 2021/08 with $\sim 18\%$ of production quantity delivered

Author List

- Carleton University ٠
 - C. Klein, J. Keller, E. Staats, C. Jessiman, T. Koffas
- Academy of Sciences of the Czech Republic ٠
 - M. Mikestikova, J. Kroll, V. Latonova, J. Kvasnicka, P. Federicova, P. Tuma
- Santa Cruz Institute for Particle Physics (SCIPP) ۲
 - N. Kang, J. Gunneell, J. Yarwick, A. Dowling, J. Johnson, M. Gignac, F. Martinez-Mckinney, K. Affolder, A. Affolder, S. Kachiguin, V. Fadeyev
- KEK ۲
 - Y. Unno KEK-JAPAN
- University of Tsukuba _{筑波大学}
- Centro Nacional de Microelectronica (IMB-CNM, CSIC)
 - M. Ullan ۲
- TRIUMF/SFU ۲

- S. Beaupre, J. Fernandez-Tejero, A. Fournier, G. Greig, L. Poley. T.L. Stack, B. Stelzer
- Cambridge University
 - B. Hommels
- UNIVERSITY OF CAMBRIDGE Queen Mary University London (QMUL)
 - P. Miyagawa, I. Dawson

0

Acknowledgments

- The work at Carleton was supported by the Canada Foundation for Innovation and the Natural Science and Engineering Research Council of Canada
- The work in Prague was supported by the Ministry of Education, Youth and Sports of the Czech Republic coming from the projects LTT17018 Inter-Excellence and LM2018104 CERN-CZ and by Charles University grant GAUK 942119
- The work at SCIPP was supported by the US Department of Energy, grant DE-SC0010107
- The work at TRIUMF/SFU was supported by the Canada Foundation for Innovation and the Natural Science and Engineering Research Council of Canada as well as the Alexander von Humboldt Foundation.
- The work at CNM was supported by the Spanish R&D grant PID2019-110189RB-C22, funded by MCIN/ AEI/10.13039/501100011033