

Caracterization of neutron irradiated IMB-CNM SiC planar diodes with TPA-TCT

Esteban Currás¹, Marcos Fernández García^{1,2}, Richard Jaramillo², Michael Moll¹, Raúl Montero³, Rogelio F. Palomo⁴, Sebastian Pape^{1,5}, Giulio Pellegrini⁶, Cristian Quintana², Joan Marc Rafí⁶, Gemma Rius⁶, Iván Vila², Moritz Wiehe^{1,7}

¹CERN

²Instituto de Física de Cantabria (CSIC-UC)
³Universidad del País Vasco
⁴Universidad de Sevilla
⁵TU Dortmund University
⁶IMB-CNM(CSIC)
⁷Univeristät Freiburg

- Sample description
- Experimental setup
- Raw data corrections
- Characterization results
 - \rightarrow Non irradiated detectors
 - \rightarrow Irradiated detectors
- Discussion and Summary

Silicon carbide detectors

CNM SiC planar pad diodes P in N

Neutron-irradiated (ATI Vienna) July/Aug 2021

- \rightarrow 1MW2 (Non-irradiated)
- \rightarrow F2W1 (1e15 n_{eq}/cm²)
- \rightarrow K6W1 (4e14 n_{eq}/cm²)

RD50 - C. Quintana - SiC Characterization

Experimental setup for TPA-TCT

RD50 - C. Quintana - SiC Characterization

Raw data corrections: Energy fluctuations

- \rightarrow Analysis of short term variations on laser's power emission.
- \rightarrow Power variation done with a variable attenuator

Laser power vs TPA Charge

- \rightarrow Correlation between the laser power and the signal.
- \rightarrow Power of two correlation \rightarrow TPA

Laser power vs Charge log relation

RD50 - C. Quintana - SiC Characterization

Raw data corrections: laser temporal instabilities

In longer time periods (several minutes) the temporal profile of the laser fluctuates

06/22/22

RD50 - C. Quintana - SiC Characterization

Raw data: Transient currents

Z-scan charge profiles: non-irradiated diodes

$$Q(z) \propto tan^{-1} \left(\frac{z-z_r}{a}\right) + tan^{-1} \left(\frac{z_l-z}{b}\right)$$

- Wiehe, Moritz Oliver - CERN-THESIS-2021-225

06/22/22

RD50 - C. Quintana - SiC Characterization

Depletion width vs bias: non irradiated

iF(A

- \rightarrow Diode behavior
- \rightarrow Diode fully depleted between 300-500 volts.
- \rightarrow Homogeneity in the sensor depletion

 $\rightarrow\,$ Capacitance value matches the direct capacitance measurements

 \rightarrow Effective doping of the bulk over the real doping value: SiC vs Si at room temperature

06/22/22

RD50 - C. Quintana - SiC Characterization

Z-scan charge profiles: irradiated diodes

- \rightarrow The diode behavior lost!
- $\rightarrow\,$ Capacitor-like charge collection
- \rightarrow No charge collection saturation with bias voltage

- \rightarrow Same effect in both detectors
- $\rightarrow\,$ Charge collection drops with irradiation
- \rightarrow Worse fits for F2W1 because the SNR is lower.

Charge profile K6W1(5e14) P2

Charge profile F2W1(1e15) P2

Depletion width vs bias: irradiated

 $\rightarrow\,$ Both figures show that the depletion width is constant for the irradiated detectors.

 \rightarrow The depletion width is different if we compare irradiated and non-irradiated detectors, but also between the irradiated ones.

Depletion width vs bias

Scans set: Charge / P^3.5 [Normalized] 1 - Zscans K6W1(5e14) P1 Vbias [V] 50 Zscans K6W1(5e14) P2 **—**-50 Zscans K6W1(5e14) P3 0.8 **—**-100 Zscans F2W1(1e15) P1 -200 z dep. [um] 40 Zscans F2W1(1e15) P2 0.6 — Zscans F2W1(1e15) P3 — Zscans 1MW2(NI) P1 30 0.4 -Zscans 1MW2(NI) P2 — Zscans 1MW2(NI) P3 0.2 20 10 -40-200 40 60 80 20 z [um] 200 400 600 800 1000 0 Vbias [V]

Charge profileK6W1(5e14) P2

RD50 - C. Quintana - SiC Characterization

Electrical capacitance vs TPA capacitance

 \rightarrow Very similar capacitance values for nonirradiated. The difference could be attributed to an error in the estimation of the effective area of the diode.

- \rightarrow Irr: Constant capacitance (as z-dep) but different values.
- $\rightarrow\,$ Final TPA-TCT capacitance different for each fluence

Charge collection efficiency vs fluence

Dependence with irradiation:

resistive electrode.

 \rightarrow Charge collection increases with bias

 \rightarrow Charge collection decreases with irradiation. \rightarrow Lost of charge due to signal trapping in the

P1: Closest point to the charge collection ring.

13

Discussion - Summary

- We have successfully applied the TPA-TCT method for the first time to SiC diodes.
- The measured effective doping of the silicon carbide substrate agrees with the nominal doping value.
- Neutron irradiated samples do not present a diode-like behavior (bias-independent sensitive region).
- The width of the sensitive region depends on the fluence.
- Further TPA-TCT and TRIBIC (at CNA) campaigns scheduled.

Thanks for your attention

Laser fluctuations correction (I)

RD50 - C. Quintana - SiC Characterization

Laser fluctuations correction (II)

Correction comparison vs events

06/22/22

RD50 - C. Quintana - SiC Characterization

SPA subtraction (on z-scans) I:

$$S_i(P, z) = S_i^{SPA}(P) + S_i^{TPA}(P, z)$$
$$S_i(P_i, z_i) = \alpha P_i + \beta(z_i) P_i^2$$

Signal generation as the contribution of two components, the SPA (always present) and the TPA (only if the focus is inside the detector)

SPA subtraction (on z-scans) II:

06/22/22

RD50 - C. Quintana - SiC Characterization

SPA correction

RD50 - C. Quintana - SiC Characterization

Raw z-scan charge profiles

RD50 - C. Quintana - SiC Characterization